Found problems: 15460
2012 ITAMO, 4
Let $x_1,x_2,x_3, \cdots$ be a sequence defined by the following recurrence relation:
\[ \begin{cases}x_{1}&= 4\\ x_{n+1}&= x_{1}x_{2}x_{3}\cdots x_{n}+5\text{ for }n\ge 1\end{cases} \]
The first few terms of the sequence are $x_1=4,x_2=9,x_3=41 \cdots$
Find all pairs of positive integers $\{a,b\}$ such that $x_a x_b$ is a perfect square.
2017 CMIMC Individual Finals, 3
Say an integer polynomial is $\textit{primitive}$ if the greatest common divisor of its coefficients is $1$. For example, $2x^2+3x+6$ is primitive because $\gcd(2,3,6)=1$. Let $f(x)=a_2x^2+a_1x+a_0$ and $g(x) = b_2x^2+b_1x+b_0$, with $a_i,b_i\in\{1,2,3,4,5\}$ for $i=0,1,2$. If $N$ is the number of pairs of polynomials $(f(x),g(x))$ such that $h(x) = f(x)g(x)$ is primitive, find the last three digits of $N$.
2017 Czech-Polish-Slovak Match, 1
Find all positive real numbers $c$ such that there are infinitely many pairs of positive integers $(n,m)$ satisfying the following conditions: $n \ge m+c\sqrt{m - 1}+1$ and among numbers $n. n+1,.... 2n-m$ there is no square of an integer.
(Slovakia)
2005 IMO Shortlist, 6
Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$.
[i]Proposed by Mohsen Jamali, Iran[/i]
2017 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1. [/b]The Queen of Bees invented a new language for her hive. The alphabet has only $6$ letters: A, C, E, N, R, T; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the word TRANCE immediately follows NECTAR. What is the last word in the dictionary?
[b]p2.[/b] Is it possible to solve the equation $\frac{1}{x}= \frac{1}{y} +\frac{1}{z}$ with $x,y,z$ integers (positive or negative) such that one of the numbers $x,y,z$ has one digit, another has two digits, and the remaining one has three digits?
[b]p3.[/b] The $10,000$ dots in a $100\times 100$ square grid are all colored blue. Rekha can paint some of them red, but there must always be a blue dot on the line segment between any two red dots. What is the largest number of dots she can color red? The picture shows a possible coloring for a $5\times 7$ grid.
[img]https://cdn.artofproblemsolving.com/attachments/0/6/795f5ab879938ed2a4c8844092b873fb8589f8.jpg[/img]
[b]p4.[/b] Six flies rest on a table. You have a swatter with a checkerboard pattern, much larger than the table. Show that there is always a way to position and orient the swatter to kill at least five of the flies. Each fly is much smaller than a swatter square and is killed if any portion of a black square hits any part of the fly.
[b]p5.[/b] Maryam writes all the numbers $1-81$ in the cells of a $9\times 9$ table. Tian calculates the product of the numbers in each of the nine rows, and Olga calculates the product of the numbers in every column. Could Tian's and Olga's lists of nine products be identical?
[u]Round 2[/u]
[b]p6.[/b] A set of points in the plane is epic if, for every way of coloring the points red or blue, it is possible to draw two lines such that each blue point is on a line, but none of the red points are. The figure shows a particular set of $4$ points and demonstrates that it is epic. What is the maximum possible size of an epic set?
[img]https://cdn.artofproblemsolving.com/attachments/e/f/44fd1679c520bdc55c78603190409222d0b721.jpg[/img]
[b]p7.[/b] Froggy Chess is a game played on a pond with lily pads. First Judit places a frog on a pad of her choice, then Magnus places a frog on a different pad of his choice. After that, they alternate turns, with Judit moving first. Each player, on his or her turn, selects either of the two frogs and another lily pad where that frog must jump. The jump must reduce the distance between the frogs (all distances between the lily pads are different), but both frogs cannot end up on the same lily pad. Whoever cannot make a move loses. The picture below shows the jumps permitted in a particular situation.
Who wins the game if there are $2017$ lily pads?
[img]https://cdn.artofproblemsolving.com/attachments/a/9/1a26e046a2a614a663f9d317363aac61654684.jpg[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1982 IMO Longlists, 9
Given any two real numbers $\alpha$ and $\beta , 0 \leq \alpha < \beta \leq 1$, prove that there exists a natural number $m$ such that
\[\alpha < \frac{\phi(m)}{m} < \beta.\]
2012 BMT Spring, round 2
[b]p1.[/b] $4$ balls are distributed uniformly at random among $6$ bins. What is the expected number of empty bins?
[b]p2.[/b] Compute ${150 \choose 20 }$ (mod $221$).
[b]p3.[/b] On the right triangle $ABC$, with right angle at$ B$, the altitude $BD$ is drawn. $E$ is drawn on $BC$ such that AE bisects angle $BAC$ and F is drawn on $AC$ such that $BF$ bisects angle $CBD$. Let the intersection of $AE$ and $BF$ be $G$. Given that $AB = 15$,$ BC = 20$, $AC = 25$, find $\frac{BG}{GF}$ .
[b]p4.[/b] What is the largest integer $n$ so that $\frac{n^2-2012}{n+7}$ is also an integer?
[b]p5.[/b] What is the side length of the largest equilateral triangle that can be inscribed in a regular pentagon with side length $1$?
[b]p6.[/b] Inside a LilacBall, you can find one of $7$ different notes, each equally likely. Delcatty must collect all $7$ notes in order to restore harmony and save Kanto from eternal darkness. What is the expected number of LilacBalls she must open in order to do so?
PS. You had better use hide for answers.
2019 Saudi Arabia JBMO TST, 2
Solve in non-negative integers the equation
$125.2^n-3^m=271$
1999 Korea Junior Math Olympiad, 6
For a positive integer $n$, let $p(n)$ denote the smallest prime divisor of $n$. Find the maximum number of divisors $m$ can have if $p(m)^4>m$.
2020 Moldova EGMO TST, 1
Let[i] $a,b,c$[/i] be positive integers , such that $A=\frac{a^2+1}{bc}+\frac{b^2+1}{ca}+\frac{c^2+1}{ab}$ is, also, an integer.
Proof that $\gcd( a, b, c)\leq\lfloor\sqrt[3]{a+ b+ c}\rfloor$.
2010 Mid-Michigan MO, 5-6
[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run?
[b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle?
[b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region?
[img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img]
[b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$?
[b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Iran MO (3rd round), 4
$a,b,c,d,k,l$ are positive integers such that for every natural number $n$ the set of prime factors of $n^k+a^n+c,n^l+b^n+d$ are same. prove that $k=l,a=b,c=d$.
2019 IMAR Test, 3
Consider a natural number $ n\equiv 9\pmod {25}. $ Prove that there exist three nonnegative integers $ a,b,c $ having the property that:
$$ n=\frac{a(a+1)}{2} +\frac{b(b+1)}{2} +\frac{c(c+1)}{2} $$
2021 Thailand TST, 1
For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$
2024 Czech and Slovak Olympiad III A, 1
Let $a, b, c$ be positive integers such that one of the values $$gcd(a,b) \cdot lcm(b,c), \,\,\,\, gcd(b,c)\cdot lcm(c,a), \,\,\,\, gcd(c,a)-\cdot lcm(a,b)$$
is equal to the product of the remaining two. Prove that one of the numbers $a, b, c$ is a multiple of another of them.
2004 Czech-Polish-Slovak Match, 6
On the table there are $k \ge 3$ heaps of $1, 2, \dots , k$ stones. In the first step, we choose any three of the heaps, merge them into a single new heap, and remove $1$ stone from this new heap. Thereafter, in the $i$-th step ($i \ge 2$) we merge some three heaps containing more than $i$ stones in total and remove $i$ stones from the new heap. Assume that after a number of steps a single heap of $p$ stones remains on the table. Show that the number $p$ is a perfect square if and only if so are both $2k + 2$ and $3k + 1$. Find the least $k$ with this property.
2002 AMC 12/AHSME, 12
Both roots of the quadratic equation $ x^2 \minus{} 63x \plus{} k \equal{} 0$ are prime numbers. The number of possible values of $ k$ is
$ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \textbf{more than four}$
2011 Dutch BxMO TST, 4
Let $n \ge 2$ be an integer. Let $a$ be the greatest positive integer such that $2^a | 5^n - 3^n$.
Let $b$ be the greatest positive integer such that $2^b \le n$. Prove that $a \le b + 3$.
2015 AIME Problems, 3
There is a prime number $p$ such that $16p+1$ is the cube of a positive integer. Find $p$.
1971 IMO Longlists, 44
Let $m$ and $n$ denote integers greater than $1$, and let $\nu (n)$ be the number of primes less than or equal to $n$. Show that if the equation $\frac{n}{\nu(n)}=m$ has a solution, then so does the equation $\frac{n}{\nu(n)}=m-1$.
2009 Moldova Team Selection Test, 4
[color=darkred]Let $ m$ and $ n$ be two nonzero natural numbers. In every cell $ 1 \times 1$ of the rectangular table $ 2m \times 2n$ are put signs $ \plus{}$ or $ \minus{}$. We call [i]cross[/i] an union of all cells which are situated in a line and in a column of the table. Cell, which is situated at the intersection of these line and column is called [i]center of the cross[/i]. A transformation is defined in the following way: firstly we mark all points with the sign $ \minus{}$. Then consecutively, for every marked cell we change the signs in the cross, whose center is the choosen cell. We call a table [i]accesible[/i] if it can be obtained from another table after one transformation.
Find the number of all [i]accesible[/i] tables.[/color]
1990 Iran MO (2nd round), 2
Find all integer solutions to the equation
\[(x^2-x)(x^2-2x+2)=y^2-1\]
2003 India National Olympiad, 4
Find all $7$-digit numbers which use only the digits $5$ and $7$ and are divisible by $35$.
2022 Austrian Junior Regional Competition, 4
Determine all prime numbers $p, q$ and $r$ with $p + q^2 = r^4$.
[i](Karl Czakler)[/i]
2020-21 IOQM India, 6
What is the least positive integer by which $2^5 \cdot 3^6 \cdot 4^3 \cdot 5^3 \cdot 6^7$ should be multiplied so that, the product is a perfect square?