This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 21

2013 Ukraine Team Selection Test, 2

The teacher reported to Peter an odd integer $m \le 2013$ and gave the guy a homework. Petrick should star the cells in the $2013 \times 2013$ table so to make the condition true: if there is an asterisk in some cell in the table, then or in row or column containing this cell should be no more than $m$ stars (including this one). Thus in each cell of the table the guy can put at most one star. The teacher promised Peter that his assessment would be just the number of stars that the guy will be able to place. What is the greatest number will the stars be able to place in the table Petrick?

2019 Czech-Polish-Slovak Junior Match, 3

Determine all positive integers $n$ such that it is possible to fill the $n \times n$ table with numbers $1, 2$ and $-3$ so that the sum of the numbers in each row and each column is $0$.

2019 Tournament Of Towns, 5

One needs to ffll the cells of an $n\times n$ table ($n > 1$) with distinct integers from $1$ to $n^2$ so that every two consecutive integers are placed in cells that share a side, while every two integers with the same remainder if divided by $n$ are placed in distinct rows and distinct columns. For which $n$ is this possible? (Alexandr Gribalko)

KoMaL A Problems 2024/2025, A. 884

We fill in an $n\times n$ table with real numbers such that the sum of the numbers in each row and each coloumn equals $1$. For which values of $K$ is the following statement true: if the sum of the absolute values of the negative entries in the table is at most $K$, then it's always possible to choose $n$ positive entries of the table such that each row and each coloumn contains exactly one of the chosen entries. [i]Proposed by Dávid Bencsik, Budapest[/i]

2017 Czech-Polish-Slovak Junior Match, 5

In each square of the $100\times 100$ square table, type $1, 2$, or $3$. Consider all subtables $m \times n$, where $m = 2$ and $n = 2$. A subtable will be called [i]balanced [/i] if it has in its corner boxes of four identical numbers boxes . For as large a number $k$ prove, that we can always find $k$ balanced subtables, of which no two overlap, i.e. do not have a common box.

Russian TST 2021, P3

Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied: [list] [*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$; [*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$. [/list] A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.

2011 IFYM, Sozopol, 1

In the cells of a square table $n$ x $n$ the numbers $1,2,...,n^2$ are written in an arbitrary way. Prove that there exist two adjacent cells, for which the difference between the numbers written in them is no lesser than $n$.

2022 Kazakhstan National Olympiad, 6

Numbers from $1$ to $49$ are randomly placed in a $35 \times 35$ table such that number $i$ is used exactly $i$ times. Some random cells of the table are removed so that table falls apart into several connected (by sides) polygons. Among them, the one with the largest area is chosen (if there are several of the same largest areas, a random one of them is chosen). What is the largest number of cells that can be removed that guarantees that in the chosen polygon there is a number which occurs at least $15$ times?

2020 IMO Shortlist, C7

Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied: [list] [*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$; [*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$. [/list] A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.

2018 Belarusian National Olympiad, 9.8

A positive integer $n$ is fixed. Numbers $0$ and $1$ are placed in all cells (exactly one number in any cell) of a $k \times n$ table ($k$ is a number of the rows in the table, $n$ is the number of the columns in it). We call a table nice if the following property is fulfilled: for any partition of the set of the rows of the table into two nonempty subsets $R$[size=75]1[/size] and $R$[size=75]2[/size] there exists a nonempty set $S$ of the columns such that on the intersection of any row from $R$[size=75]1[/size] with the columns from $S$ there are even number of $1's$ while on the intersection of any row from $R$[size=75]2[/size] with the columns from $S$ there are odd number of $1's$. Find the greatest number of $k$ such that there exists at least one nice $k \times n$ table.

2021 Taiwan TST Round 2, C

Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied: [list] [*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$; [*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$. [/list] A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.

2021 Abels Math Contest (Norwegian MO) Final, 1a

A $3n$-table is a table with three rows and $n$ columns containing all the numbers $1, 2, …, 3n$. Such a table is called [i]tidy [/i] if the $n$ numbers in the first row appear in ascending order from left to right, and the three numbers in each column appear in ascending order from top to bottom. How many tidy $3n$-tables exist?

2017 IFYM, Sozopol, 4

Find all $n\in \mathbb{N}$, $n>1$ with the following property: All divisors of $n$ can be put in a rectangular table in such way that the sums of the numbers by rows are equal and the sums of the numbers by columns are also equal.

2012 Silk Road, 2

In each cell of the table $4 \times 4$, in which the lines are labeled with numbers $1,2,3,4$, and columns with letters $a,b,c,d$, one number is written: $0$ or $1$ . Such a table is called [i]valid [/i] if there are exactly two units in each of its rows and in each column. Determine the number of [i]valid [/i] tables.

2020 Tournament Of Towns, 1

Is it possible to fill a $40 \times 41$ table with integers so that each integer equals the number of adjacent (by an edge) cells with the same integer? Alexandr Gribalko

2018 IFYM, Sozopol, 1

Let $n > 4$ be an integer. A square is divided into $n^2$ smaller identical squares, in some of which were [b]1’s[/b] and in the other – [b]0's[/b]. It is not allowed in one row or column to have the following arrangements of adjacent digits in this order: $101$, $111$ or $1001$. What is the biggest number of [b]1’s[/b] in the table? (The answer depends on $n$.)

2024 Czech-Polish-Slovak Junior Match, 6

We are given a rectangular table with a positive integer written in each of its cells. For each cell of the table, the number in it is equal to the total number of different values in the cells that are in the same row or column (including itself). Find all tables with this property.

2019 Czech and Slovak Olympiad III A, 6

Assume we can fill a table $n\times n$ with all numbers $1,2,\ldots,n^2-1,n^2$ in such way that arithmetic means of numbers in every row and every column is an integer. Determine all such positive integers $n$.

2022 Serbia National Math Olympiad, P3

The table of dimensions $n\times n$, $n\in\mathbb{N}$, is filled with numbers from $1$ to $n^2$, but the difference any two numbers on adjacent fields is at most $n$, and that for every $k = 1, 2,\dots , n^2$ set of fields whose numbers are $1, 2,\dots , k$ is connected, as well as the set of fields whose numbers are $k, k + 1,\dots , n^2$. Neighboring fields are fields with a common side, while a set of fields is considered connected if from each field to every other field of that set can be reached going only to the neighboring fields within that set. We call a pair of adjacent numbers, ie. numbers on adjacent fields, good, if their absolute difference is exactly $n$ (one number can be found in several good pairs). Prove that the table has at least $2 (n - 1)$ good pairs.

2018 Mediterranean Mathematics OIympiad, 4

Determine the largest integer $N$, for which there exists a $6\times N$ table $T$ that has the following properties: $*$ Every column contains the numbers $1,2,\ldots,6$ in some ordering. $*$ For any two columns $i\ne j$, there exists a row $r$ such that $T(r,i)= T(r,j)$. $*$ For any two columns $i\ne j$, there exists a row $s$ such that $T(s,i)\ne T(s,j)$. (Proposed by Gerhard Woeginger, Austria)

2021 Thailand TST, 3

Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a [i]saddle pair[/i] if the following two conditions are satisfied: [list] [*] $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$; [*] $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$. [/list] A saddle pair $(R, C)$ is called a [i]minimal pair[/i] if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.