This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 54

1975 Chisinau City MO, 113

Prove that any integer $n$ satisfying the inequality $n <(44 + \sqrt{1975})^100 <n + 1$ is odd.

2008 Switzerland - Final Round, 6

Determine all odd natural numbers of the form $$\frac{p + q}{p - q},$$ where $p > q$ are prime numbers.

2011 Singapore Junior Math Olympiad, 4

Any positive integer $n$ can be written in the form $n = 2^aq$, where $a \ge 0$ and $q$ is odd. We call $q$ the [i]odd part[/i] of $n$. Define the sequence $a_0,a_1,...$ as follows: $a_0 = 2^{2011}-1$ and for $m > 0, a_{m+i}$ is the odd part of $3a_m + 1$. Find $a_{2011}$.

2010 Belarus Team Selection Test, 4.3

a) Prove that there are infinitely many pairs $(m, n)$ of positive integers satisfying the following equality $[(4 + 2\sqrt3)m] = [(4 -2\sqrt3)n]$ b) Prove that if $(m, n)$ satisfies the equality, then the number $(n + m)$ is odd. (I. Voronovich)

1931 Eotvos Mathematical Competition, 2

Let $a^2_1+ a^2_2+ a^2_3+ a^2_4+ a^2_5= b^2$, where $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, and $b$ are integers. Prove that not all of these numbers can be odd.

2012 Belarus Team Selection Test, 2

Given $\lambda^3 - 2\lambda^2- 1 = 0$ for some real $\lambda$ prove that $[\lambda[\lambda[\lambda n]]] - n$ is odd for any positive integer $n$ . (I Voronovich)

2017 Grand Duchy of Lithuania, 4

Show that there are infinitely many positive integers $n$ such that the number of distinct odd prime factors of $n(n + 3)$ is a multiple of $3$. (For instance, $180 = 2^2 \cdot 3^2 \cdot 5$ has two distinct odd prime factors and $840 = 2^3 \cdot 3 \cdot 5 \cdot 7$ has three.)

2013 Saudi Arabia BMO TST, 8

Prove that the ratio $$\frac{1^1 + 3^3 + 5^5 + ...+ (2^{2013} - 1)^{(2^{2013} - 1)}}{2^{2013}}$$ is an odd integer.

2017 Balkan MO Shortlist, N5

Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .

2019 Auckland Mathematical Olympiad, 3

Tags: odd , number theory
Let $x$ be the smallest positive integer that cannot be expressed in the form $\frac{2^a - 2^b}{2^c - 2^d}$, where $a$, $b$, $c$, $d$ are non-negative integers. Prove that $x$ is odd.

2010 Bosnia And Herzegovina - Regional Olympiad, 3

Let $n$ be an odd positive integer bigger than $1$. Prove that $3^n+1$ is not divisible with $n$

1981 Bundeswettbewerb Mathematik, 1

A sequence $a_1, a_2, a_3, \ldots $ is defined as follows: $a_1$ is a positive integer and $$a_{n+1} = \left\lfloor \frac{3}{2} a_n \right\rfloor +1$$ for all $n \in \mathbb{N}$. Can $a_1$ be chosen in such a way that the first $100000$ terms of the sequence are even, but the $100001$-th term is odd?

2017 Romania Team Selection Test, P4

Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .

2015 Brazil Team Selection Test, 1

Tags: function , odd , even , periodic , algebra
Let's call a function $f : R \to R$ [i]cool[/i] if there are real numbers $a$ and $b$ such that $f(x + a)$ is an even function and $f(x + b)$ is an odd function. (a) Prove that every cool function is periodic. (b) Give an example of a periodic function that is not cool.

1987 All Soviet Union Mathematical Olympiad, 448

Given two closed broken lines in the plane with odd numbers of edges. All the lines, containing those edges are different, and not a triple of them intersects in one point. Prove that it is possible to chose one edge from each line such, that the chosen edges will be the opposite sides of a convex quadrangle.

2015 Gulf Math Olympiad, 1

a) Suppose that $n$ is an odd integer. Prove that $k(n-k)$ is divisible by $2$ for all positive integers $k$. b) Find an integer $k$ such that $k(100-k)$ is not divisible by $11$. c) Suppose that $p$ is an odd prime, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by $p$. d) Suppose that $p,q$ are two different odd primes, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by any of $p,q$.

1999 Estonia National Olympiad, 1

Prove that if $p$ is an odd prime, then $p^2(p^2 -1999)$ is divisible by $6$ but not by $12$.

2017 May Olympiad, 1

Tags: number theory , digit , odd
To each three-digit number, Matías added the number obtained by inverting its digits. For example, he added $729$ to the number $927$. Calculate in how many cases the result of the sum of Matías is a number with all its digits odd.

1989 Austrian-Polish Competition, 9

Find the smallest odd natural number $N$ such that $N^2$ is the sum of an odd number (greater than $1$) of squares of adjacent positive integers.

2021 Saudi Arabia IMO TST, 1

For a non-empty set $T$ denote by $p(T)$ the product of all elements of $T$. Does there exist a set $T$ of $2021$ elements such that for any $a\in T$ one has that $P(T)-a$ is an odd integer? Consider two cases: 1) All elements of $T$ are irrational numbers. 2) At least one element of $T$ is a rational number.

1996 Singapore Senior Math Olympiad, 3

Tags: odd , number theory
Prove that for any positive even integer $n$ larger than $38$, $n$ can be written as $a\times b+c\times d$ where $a, b, c, d$ are odd integers larger than $1$.

1979 Chisinau City MO, 174

Prove that for any odd number $a$ there exists an integer $b$ such that $2^b-1$ is divisible by $a$.

2017 Puerto Rico Team Selection Test, 5

Tags: number theory , odd , prime
Find a pair prime numbers $(p, q)$, $p> q$ of , if any, such that $\frac{p^2 - q^2}{4}$ is an odd integer.

2000 Rioplatense Mathematical Olympiad, Level 3, 1

Let $a$ and $b$ be positive integers such that the number $b^2 + (b +1)^2 +...+ (b + a)^2-3$ is multiple of $5$ and $a + b$ is odd. Calculate the digit of the units of the number $a + b$ written in decimal notation.

2015 Saudi Arabia JBMO TST, 2

Tags: combinatorics , digit , odd
Let $A$ and $B$ be the number of odd positive integers $n<1000$ for which the number formed by the last three digits of $n^{2015}$ is greater and smaller than $n$, respectively. Prove that $A=B$.