This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 54

2016 India Regional Mathematical Olympiad, 4

Tags: odd , game , number theory
A box contains answer $4032$ scripts out of which exactly half have odd number of marks. We choose 2 scripts randomly and, if the scores on both of them are odd number, we add one mark to one of them, put the script back in the box and keep the other script outside. If both scripts have even scores, we put back one of the scripts and keep the other outside. If there is one script with even score and the other with odd score, we put back the script with the odd score and keep the other script outside. After following this procedure a number of times, there are 3 scripts left among which there is at least one script each with odd and even scores. Find, with proof, the number of scripts with odd scores among the three left.

1974 Bundeswettbewerb Mathematik, 4

Peter and Paul gamble as follows. For each natural number, successively, they determine its largest odd divisor and compute its remainder when divided by $4$. If this remainder is $1$, then Peter gives Paul a coin; otherwise, Paul gives Peter a coin. After some time they stop playing and balance the accounts. Prove that Paul wins.

2016 Dutch BxMO TST, 1

For a positive integer $n$ that is not a power of two, we de fine $t(n)$ as the greatest odd divisor of $n$ and $r(n)$ as the smallest positive odd divisor of $n$ unequal to $1$. Determine all positive integers $n$ that are not a power of two and for which we have $n = 3t(n) + 5r(n)$.

2019 Hanoi Open Mathematics Competitions, 10

For any positive integer $n$, let $r_n$ denote the greatest odd divisor of $n$. Compute $T =r_{100}+ r_{101} + r_{102}+...+r_{200}$

2019 Nigerian Senior MO Round 4, 4

We consider the real sequence ($x_n$) defined by $x_0=0, x_1=1$ and $x_{n+2}=3x_{n+1}-2 x_{n}$ for $n=0,1,2,...$ We define the sequence ($y_n$) by $y_n=x^2_n+2^{n+2}$ for every nonnegative integer $n$. Prove that for every $n>0, y_n$ is the square of an odd integer.

2017 Romania Team Selection Test, P4

Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .

2016 Balkan MO Shortlist, N2

Find all odd natural numbers $n$ such that $d(n)$ is the largest divisor of the number $n$ different from $n$. ($d(n)$ is the number of divisors of the number n including $1$ and $n$ ).

1989 Austrian-Polish Competition, 9

Find the smallest odd natural number $N$ such that $N^2$ is the sum of an odd number (greater than $1$) of squares of adjacent positive integers.

2000 Abels Math Contest (Norwegian MO), 1a

Show that any odd number can be written as the difference between two perfect squares.

2021 Saudi Arabia IMO TST, 1

For a non-empty set $T$ denote by $p(T)$ the product of all elements of $T$. Does there exist a set $T$ of $2021$ elements such that for any $a\in T$ one has that $P(T)-a$ is an odd integer? Consider two cases: 1) All elements of $T$ are irrational numbers. 2) At least one element of $T$ is a rational number.

1931 Eotvos Mathematical Competition, 2

Let $a^2_1+ a^2_2+ a^2_3+ a^2_4+ a^2_5= b^2$, where $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, and $b$ are integers. Prove that not all of these numbers can be odd.

2010 Belarus Team Selection Test, 4.3

a) Prove that there are infinitely many pairs $(m, n)$ of positive integers satisfying the following equality $[(4 + 2\sqrt3)m] = [(4 -2\sqrt3)n]$ b) Prove that if $(m, n)$ satisfies the equality, then the number $(n + m)$ is odd. (I. Voronovich)

1981 Bundeswettbewerb Mathematik, 1

A sequence $a_1, a_2, a_3, \ldots $ is defined as follows: $a_1$ is a positive integer and $$a_{n+1} = \left\lfloor \frac{3}{2} a_n \right\rfloor +1$$ for all $n \in \mathbb{N}$. Can $a_1$ be chosen in such a way that the first $100000$ terms of the sequence are even, but the $100001$-th term is odd?

1987 All Soviet Union Mathematical Olympiad, 448

Given two closed broken lines in the plane with odd numbers of edges. All the lines, containing those edges are different, and not a triple of them intersects in one point. Prove that it is possible to chose one edge from each line such, that the chosen edges will be the opposite sides of a convex quadrangle.

2011 QEDMO 10th, 2

Tags: combinatorics , odd , even , sum
Let $n$ be a positive integer. Let $G (n)$ be the number of $x_1,..., x_n, y_1,...,y_n \in \{0,1\}$, for which the number $x_1y_1 + x_2y_2 +...+ x_ny_n$ is even, and similarly let $U (n)$ be the number for which this sum is odd. Prove that $$\frac{G(n)}{U(n)}= \frac{2^n + 1}{2^n - 1}.$$

1997 Swedish Mathematical Competition, 3

Tags: odd , number theory
Let $A$ and $B$ be integers with an odd sum. Show that every integer can be written in the form $x^2 -y^2 +Ax+By$, where $x,y$ are integers.

2004 Estonia National Olympiad, 4

Prove that the number $n^n-n$ is divisible by $24$ for any odd integer $n$.

2000 Rioplatense Mathematical Olympiad, Level 3, 1

Let $a$ and $b$ be positive integers such that the number $b^2 + (b +1)^2 +...+ (b + a)^2-3$ is multiple of $5$ and $a + b$ is odd. Calculate the digit of the units of the number $a + b$ written in decimal notation.

2010 Bosnia And Herzegovina - Regional Olympiad, 3

Let $n$ be an odd positive integer bigger than $1$. Prove that $3^n+1$ is not divisible with $n$

2005 Thailand Mathematical Olympiad, 13

Find all odd integers $k$ for which there exists a positive integer $m$ satisfying the equation $k + (k + 5) + (k + 10) + ... + (k + 5(m - 1)) = 1372$.

2012 Belarus Team Selection Test, 2

Given $\lambda^3 - 2\lambda^2- 1 = 0$ for some real $\lambda$ prove that $[\lambda[\lambda[\lambda n]]] - n$ is odd for any positive integer $n$ . (I Voronovich)

2015 Brazil Team Selection Test, 1

Tags: function , odd , even , periodic , algebra
Let's call a function $f : R \to R$ [i]cool[/i] if there are real numbers $a$ and $b$ such that $f(x + a)$ is an even function and $f(x + b)$ is an odd function. (a) Prove that every cool function is periodic. (b) Give an example of a periodic function that is not cool.

1987 Tournament Of Towns, (141) 1

Is it possible to represent the number $1986$ as the sum of squares of $6$ odd integers?

1979 Chisinau City MO, 174

Prove that for any odd number $a$ there exists an integer $b$ such that $2^b-1$ is divisible by $a$.

2016 Saudi Arabia Pre-TST, 1.3

Let $a, b$ be two positive integers such that $b + 1|a^2 + 1$,$ a + 1|b^2 + 1$. Prove that $a, b$ are odd numbers.