This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2013 IPhOO, 5

[asy] import olympiad; import cse5; size(5cm); pointpen = black; pair A = Drawing((10,17.32)); pair B = Drawing((0,0)); pair C = Drawing((20,0)); draw(A--B--C--cycle); pair X = 0.85*A + 0.15*B; pair Y = 0.82*A + 0.18*C; pair W = (-11,0) + X; pair Z = (19, 9); draw(W--X, EndArrow); draw(X--Y, EndArrow); draw(Y--Z, EndArrow); anglepen=black; anglefontpen=black; MarkAngle("\theta", C,Y,Z, 3); [/asy] The cross-section of a prism with index of refraction $1.5$ is an equilateral triangle, as shown above. A ray of light comes in horizontally from air into the prism, and has the opportunity to leave the prism, at an angle $\theta$ with respect to the surface of the triangle. Find $\theta$ in degrees and round to the nearest whole number. [i](Ahaan Rungta, 5 points)[/i]

2013 IPhOO, 8

A right-triangulated prism made of benzene sits on a table. The hypotenuse makes an angle of $30^\circ$ with the horizontal table. An incoming ray of light hits the hypotenuse horizontally, and leaves the prism from the vertical leg at an acute angle of $ \gamma $ with respect to the vertical leg. Find $\gamma$, in degrees, to the nearest integer. The index of refraction of benzene is $1.50$. [i](Proposed by Ahaan Rungta)[/i]

2013 IPhOO, 2

Light of a blue laser (wavelength $\lambda=475 \, \text{nm}$) goes through a narrow slit which has width $d$. After the light emerges from the slit, it is visible on a screen that is $ \text {2.013 m} $ away from the slit. The distance between the center of the screen and the first minimum band is $ \text {765 mm} $. Find the width of the slit $d$, in nanometers. [i](Proposed by Ahaan Rungta)[/i]