This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

1976 IMO, 3

A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.

1966 IMO Shortlist, 44

What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$

1966 IMO Longlists, 44

What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$

1978 IMO Longlists, 48

Prove that it is possible to place $2n(2n + 1)$ parallelepipedic (rectangular) pieces of soap of dimensions $1 \times 2 \times (n + 1)$ in a cubic box with edge $2n + 1$ if and only if $n$ is even or $n = 1$. [i]Remark[/i]. It is assumed that the edges of the pieces of soap are parallel to the edges of the box.

1976 IMO Shortlist, 6

A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.

1974 IMO Shortlist, 2

Prove that the squares with sides $\frac{1}{1}, \frac{1}{2}, \frac{1}{3},\ldots$ may be put into the square with side $\frac{3}{2} $ in such a way that no two of them have any interior point in common.

1974 IMO Longlists, 23

Prove that the squares with sides $\frac{1}{1}, \frac{1}{2}, \frac{1}{3},\ldots$ may be put into the square with side $\frac{3}{2} $ in such a way that no two of them have any interior point in common.

1976 IMO Longlists, 26

A box whose shape is a parallelepiped can be completely filled with cubes of side $1.$ If we put in it the maximum possible number of cubes, each of volume $2$, with the sides parallel to those of the box, then exactly $40$ percent of the volume of the box is occupied. Determine the possible dimensions of the box.

1978 IMO Shortlist, 14

Prove that it is possible to place $2n(2n + 1)$ parallelepipedic (rectangular) pieces of soap of dimensions $1 \times 2 \times (n + 1)$ in a cubic box with edge $2n + 1$ if and only if $n$ is even or $n = 1$. [i]Remark[/i]. It is assumed that the edges of the pieces of soap are parallel to the edges of the box.

2000 IMO Shortlist, 2

A staircase-brick with 3 steps of width 2 is made of 12 unit cubes. Determine all integers $ n$ for which it is possible to build a cube of side $ n$ using such bricks.