This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1996 All-Russian Olympiad Regional Round, 9.2

In triangle $ABC$, in which $AB = BC$, on side $AB$ is selected point $D$, and the ciscumcircles of triangles $ADC$ and $BDC$ , $S1$ and $S2$ respectively. The tangent drawn to $S_1$ at point $D$ intersects $S_2$ for second time at point $M$. Prove that $BM \parallel AC$.