This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 38

1945 Moscow Mathematical Olympiad, 097

The system $\begin{cases} x^2 - y^2 = 0 \\ (x - a)^2 + y^2 = 1 \end{cases}$ generally has four solutions. For which $a$ the number of solutions of the system is equal to three or two?

1990 Czech and Slovak Olympiad III A, 4

Determine the largest $k\ge0$ such that the inequality \[\left(\sum_{j=1}^n x_j\right)^2\left(\sum_{j=1}^n x_jx_{j+1}\right)\ge k\sum_{j=1}^n x_j^2x_{j+1}^2\] holds for every $n\ge2$ and any $n$-tuple $x_1,\ldots,x_n$ of non-negative numbers (given that $x_{n+1}=x_1$)

2003 Switzerland Team Selection Test, 1

Real numbers $x,y,a$ satisfy the equations $$x+y = x^3 +y^3 = x^5 +y^5 = a$$ Find all possible values of $a$.

2022 Bulgaria National Olympiad, 4

Let $n\geq 4$ be a positive integer and $x_{1},x_{2},\ldots ,x_{n},x_{n+1},x_{n+2}$ be real numbers such that $x_{n+1}=x_{1}$ and $x_{n+2}=x_{2}$. If there exists an $a>0$ such that \[x_{i}^2=a+x_{i+1}x_{i+2}\quad\forall 1\leq i\leq n\] then prove that at least $2$ of the numbers $x_{1},x_{2},\ldots ,x_{n}$ are negative.

1936 Moscow Mathematical Olympiad, 027

Solve the system $\begin{cases} x+y=a \\ x^5 +y^5 = b^5 \end{cases}$

2007 Bulgarian Autumn Math Competition, Problem 8.1

Determine all real $a$, such that the solutions to the system of equations $\begin{cases} \frac{3x-5}{3}+\frac{3x+5}{4}\geq \frac{x}{7}-\frac{1}{15}\\ (2x-a)^3+(2x+a)(1-4x^2)+16x^2a-6x^2a+a^3\leq 2a^2+a \end{cases}$ form an interval with length $\frac{32}{225}$.

1976 Dutch Mathematical Olympiad, 4

For $a,b, x \in R$ holds: $x^2 - (2a^2 + 4)x + a^2 + 2a + b = 0$. For which $b$ does this equation have at least one root between $0$ and $1$ for all $a$?

1937 Moscow Mathematical Olympiad, 032

Solve the system $\begin{cases} x+ y +z = a \\ x^2 + y^2 + z^2 = a^2 \\ x^3 + y^3 +z^3 = a^3 \end{cases}$

1996 Bosnia and Herzegovina Team Selection Test, 1

$a)$ Let $a$, $b$ and $c$ be positive real numbers. Prove that for all positive integers $m$ holds: $$(a+b)^m+(b+c)^m+(c+a)^m \leq 2^m(a^m+b^m+c^m)$$ $b)$ Does inequality $a)$ holds for $1)$ arbitrary real numbers $a$, $b$ and $c$ $2)$ any integer $m$

2007 Bulgarian Autumn Math Competition, Problem 11.2

Find all values of the parameter $a$ for which the inequality \[\sqrt{x-x^2-a}+\sqrt{6a-2x-x^2}\leq \sqrt{10a-2x-4x^2}\] has a unique solution.

2020 Czech and Slovak Olympiad III A, 3

Consider the system of equations $\begin{cases} x^2 - 3y + p = z, \\ y^2 - 3z + p = x, \\ z^2 - 3x + p = y \end{cases}$ with real parameter $p$. a) For $p \ge 4$, solve the considered system in the field of real numbers. b) Prove that for $p \in (1, 4)$ every real solution of the system satisfies $x = y = z$. (Jaroslav Svrcek)

2000 German National Olympiad, 1

For each real parameter $a$, find the number of real solutions to the system $$\begin{cases} |x|+|y| = 1 , \\ x^2 +y^2 = a \end{cases}$$

1949 Moscow Mathematical Olympiad, 161

Find the real roots of the equation $x^2 + 2ax + \frac{1}{16} = -a +\sqrt{ a^2 + x - \frac{1}{16} }$ , $\left(0 < a < \frac14 \right)$ .

1954 Czech and Slovak Olympiad III A, 1

Solve the equation $$ax^2+2(a-1)x+a-5=0$$ in real numbers with respect to (real) parametr $a$.

1974 Chisinau City MO, 74

Tags: cubic , parameter , algebra
Solve the equation: $x^3-2ax^2+(a^2-2\sqrt2 a -6)x + 2\sqrt2 a^2+ 8a + 4\sqrt2 =0$

1939 Moscow Mathematical Olympiad, 043

Solve the system $\begin{cases} 3xyz -x^3 - y^3-z^3 = b^3 \\ x + y+ z = 2b \\ x^2 + y^2-z^2 = b^2 \end{cases}$ in $C$

1939 Moscow Mathematical Olympiad, 046

Solve the equation $\sqrt{a-\sqrt{a+ x}} = x$ for $x$.

2007 Bulgarian Autumn Math Competition, Problem 12.1

Determine the values of the real parameter $a$, such that the equation \[\sin 2x\sin 4x-\sin x\sin 3x=a\] has a unique solution in the interval $[0,\pi)$.

1978 Chisinau City MO, 161

For what real values of $a$ the equation $\frac{2^{2x}}{2^{2x}+2^{x+1}+1}+a \frac{2^x}{2^x+1}+(a-1) = 0$ has a single root ?

IV Soros Olympiad 1997 - 98 (Russia), 9.2

Find all values of the parameter $a$ for which there exist exactly two integer values of $x$ that satisfy the inequality $$x^2+5\sqrt2 x+a<0.$$

2008 Bulgarian Autumn Math Competition, Problem 10.1

For which values of the parameter $a$ does the equation \[(2x-a)\sqrt{ax^2-(a^2+a+2)x+2(a+1)}=0\] has three different real roots.

2002 Swedish Mathematical Competition, 3

$C$ is the circle center $(0,1)$, radius $1$. $P$ is the parabola $y = ax^2$. They meet at $(0, 0)$. For what values of $a$ do they meet at another point or points?

2024 Austrian MO National Competition, 1

Let $\alpha$ and $\beta$ be real numbers with $\beta \ne 0$. Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that \[f(\alpha f(x)+f(y))=\beta x+f(y)\] holds for all real $x$ and $y$. [i](Walther Janous)[/i]

1935 Moscow Mathematical Olympiad, 010

Solve the system $\begin{cases} x^2 + y^2 - 2z^2 = 2a^2 \\ x + y + 2z = 4(a^2 + 1) \\ z^2 - xy = a^2 \end{cases}$

IV Soros Olympiad 1997 - 98 (Russia), 11.12

Find how many different solutions depending on $a$ has the system of equations : $$\begin{cases} x+z=2a \\ y+u+xz=a-3 \\ yz+xu=2a \\ yu=1 \end{cases}$$