This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2008 USA Team Selection Test, 2

Let $ P$, $ Q$, and $ R$ be the points on sides $ BC$, $ CA$, and $ AB$ of an acute triangle $ ABC$ such that triangle $ PQR$ is equilateral and has minimal area among all such equilateral triangles. Prove that the perpendiculars from $ A$ to line $ QR$, from $ B$ to line $ RP$, and from $ C$ to line $ PQ$ are concurrent.

2017 China Team Selection Test, 2

Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.

2017 China Team Selection Test, 2

Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.