This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 521

1990 IMO Longlists, 58

Prove that there exists a convex 1990-gon with the following two properties : [b]a.)[/b] All angles are equal. [b]b.)[/b] The lengths of the 1990 sides are the numbers $ 1^2$, $ 2^2$, $ 3^2$, $ \cdots$, $ 1990^2$ in some order.

2010 Contests, 1

A [i]permutation[/i] of the set of positive integers $[n] = \{1, 2, . . . , n\}$ is a sequence $(a_1 , a_2 , \ldots, a_n ) $ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3, 5, 1, 2, 4)$ is a permutation of $[5]$. Let $P (n)$ be the number of permutations of $[n]$ for which $ka_k$ is a perfect square for all $1 \leq k \leq n$. Find with proof the smallest $n$ such that $P (n)$ is a multiple of $2010$.

1987 Greece National Olympiad, 2

Prove that exprssion $A=\frac{25}{2}(n+2-\sqrt{2n+3})$, $(n\in\mathbb{N})$ is a perfect square of an integer if exprssion $A$ is an integer .

2009 Puerto Rico Team Selection Test, 2

The last three digits of $ N$ are $ x25$. For how many values of $ x$ can $ N$ be the square of an integer?

2018 Brazil EGMO TST, 1

(a) Let $m$ and $n$ be positive integers and $p$ a positive rational number, with $m > n$, such that $\sqrt{m} -\sqrt{n}= p$. Prove that $m$ and $n$ are perfect squares. (b) Find all four-digit numbers $\overline{abcd}$, where each letter $a, b, c$ and $d$ represents a digit, such that $\sqrt{\overline{abcd}} -\sqrt{\overline{acd}}= \overline{bb}$.

KoMaL A Problems 2017/2018, A. 717

Let's call a positive integer $n$ special, if there exist two nonnegativ integers ($a, b$), such that $n=2^a\times 3^b$. Prove that if $k$ is a positive integer, then there are at most two special numbers greater then $k^2$ and less than $k^2+2k+1$.

2020 Romania EGMO TST, P3

The sequence $(x_n)_{n\geqslant 0}$ is defined as such: $x_0=1, x_1=2$ and $x_{n+1}=4x_n-x_{n-1}$, for all $n\geqslant 1$. Determine all the terms of the sequence which are perfect squares. [i]George Stoica, Canada[/i]

2018 Rioplatense Mathematical Olympiad, Level 3, 1

Determine if there are $2018$ different positive integers such that the sum of their squares is a perfect cube and the sum of their cubes is a perfect square.

2022 Latvia Baltic Way TST, P13

Call a pair of integers $a$ and $b$ square makers , if $ab+1$ is a perfect square. Determine for which $n$ is it possible to divide the set $\{1,2, \dots , 2n\}$ into $n$ pairs of square makers.

2010 Saudi Arabia Pre-TST, 1.2

Find all integers $n$ for which $n(n + 2010)$ is a perfect square.

2013 AIME Problems, 6

Find the least positive integer $N$ such that the set of $1000$ consecutive integers beginning with $1000 \cdot N$ contains no square of an integer.

1986 All Soviet Union Mathematical Olympiad, 423

Prove that the rectangle $m\times n$ table can be filled with exact squares so, that the sums in the rows and the sums in the columns will be exact squares also.

2015 Greece JBMO TST, 3

Prove that there is not a positive integer $n$ such that numbers $(n+1)2^n, (n+3)2^{n+2}$ are both perfect squares.

2019 Peru MO (ONEM), 1

Determine for what $n\ge 3$ integer numbers, it is possible to find positive integer numbers $a_1 < a_2 < ...< a_n$ such $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}=1$ and $a_1 a_2\cdot\cdot\cdot a_n$ is a perfect square.

2014 India IMO Training Camp, 2

Determine whether there exists an infinite sequence of nonzero digits $a_1 , a_2 , a_3 , \cdots $ and a positive integer $N$ such that for every integer $k > N$, the number $\overline{a_k a_{k-1}\cdots a_1 }$ is a perfect square.

1989 Swedish Mathematical Competition, 3

Find all positive integers $n$ such that $n^3 - 18n^2 + 115n - 391$ is the cube of a positive intege

2001 Romania Team Selection Test, 4

Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

2006 Spain Mathematical Olympiad, 2

Prove that the product of four consecutive natural numbers can not be neither square nor perfect cube.

2024 Bundeswettbewerb Mathematik, 2

Can a number of the form $44\dots 41$, with an odd number of decimal digits $4$ followed by a digit $1$, be a perfect square?

2010 Dutch Mathematical Olympiad, 3

Consider a triangle $XYZ$ and a point $O$ in its interior. Three lines through $O$ are drawn, parallel to the respective sides of the triangle. The intersections with the sides of the triangle determine six line segments from $O$ to the sides of the triangle. The lengths of these segments are integer numbers $a, b, c, d, e$ and $f$ (see figure). Prove that the product $a \cdot b \cdot c\cdot d \cdot e \cdot f$ is a perfect square. [asy] unitsize(1 cm); pair A, B, C, D, E, F, O, X, Y, Z; X = (1,4); Y = (0,0); Z = (5,1.5); O = (1.8,2.2); A = extension(O, O + Z - X, X, Y); B = extension(O, O + Y - Z, X, Y); C = extension(O, O + X - Y, Y, Z); D = extension(O, O + Z - X, Y, Z); E = extension(O, O + Y - Z, Z, X); F = extension(O, O + X - Y, Z, X); draw(X--Y--Z--cycle); draw(A--D); draw(B--E); draw(C--F); dot("$A$", A, NW); dot("$B$", B, NW); dot("$C$", C, SE); dot("$D$", D, SE); dot("$E$", E, NE); dot("$F$", F, NE); dot("$O$", O, S); dot("$X$", X, N); dot("$Y$", Y, SW); dot("$Z$", Z, dir(0)); label("$a$", (A + O)/2, SW); label("$b$", (B + O)/2, SE); label("$c$", (C + O)/2, SE); label("$d$", (D + O)/2, SW); label("$e$", (E + O)/2, SE); label("$f$", (F + O)/2, NW); [/asy]

2008 Singapore Junior Math Olympiad, 5

Determine all primes $p$ such that $5^p + 4 p^4$ is a perfect square, i.e., the square of an integer.

2009 Silk Road, 4

Prove that for any prime number $p$ there are infinitely many fours $(x, y, z, t)$ pairwise distinct natural numbers such that the number $(x^2+p t^2)(y^2+p t^2)(z^2+p t^2)$ is a perfect square.

1936 Moscow Mathematical Olympiad, 022

Find a four-digit perfect square whose first digit is the same as the second, and the third is the same as the fourth.

1994 Italy TST, 2

Find all prime numbers $p$ for which $\frac{2^{p-1} -1}{p}$ is a perfect square.

2020 Thailand TST, 3

Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\] is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) [i]Russia[/i]