This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2025 ISI Entrance UGB, 4

Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the [i]period[/i] of $z$. Determine the total number of points in $S^1$ of period $2025$. (Hint : $2025 = 3^4 \times 5^2$)

VII Soros Olympiad 2000 - 01, 11.1

Prove that for any $a$ the function $y (x) = \cos (\cos x) + a \cdot \sin (\sin x)$ is periodic. Find its smallest period in terms of $a$.

1996 Romania National Olympiad, 2

a) Let $f_1,f_2,\ldots,f_n: \mathbb{R} \to \mathbb{R}$ be periodic functions such that the function $f: \mathbb{R} \to \mathbb{R},$ $f=f_1+f_2+\ldots+f_n$ has finite limit at $\infty.$ Prove that $f$ is constant. b) If $a_1,a_2,a_3$ are real numbers such that $a_1 \cos(a_1x) + a_2 \cos (a_2x) + a_3 \cos(a_3x) \ge 0$ for every $x \in \mathbb{R},$ then $a_1a_2a_3=0.$

2010 Gheorghe Vranceanu, 4

Let be two real numbers $ \alpha ,\beta $ and two sequences $ \left(x_n \right)_{n\ge 1} ,\left(y_n \right)_{n\ge 1} $ whose smallest periods are $ p,q, $ respectively. Prove that the sequence $ \left( \alpha x_n+\beta y_n\right)_{n\ge 1} $ is periodic if $ \text{gcd}^2 (p,q) | \text{lcm} (p,q) , $ and in this case find its smallest period.

2002 District Olympiad, 4

Let be a continuous and periodic function $ f:\mathbb{R}\longrightarrow [0,\infty ) $ of period $ 1. $ Show: [b]a)[/b] $ a\in\mathbb{R}\implies\int_a^{a+1} f(x)dx =\int_0^1 f(x) dx . $ [b]b)[/b] $ \lim_{n\to\infty} \int_0^1 f(x)f(nx) dx=\left( \int_0^1 f(x) dx \right)^2 . $ [i]C. Mortici[/i]