This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2025 ISI Entrance UGB, 4

Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the [i]period[/i] of $z$. Determine the total number of points in $S^1$ of period $2025$. (Hint : $2025 = 3^4 \times 5^2$)

2016 Putnam, A3

Tags: mapping
Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that \[f(x)+f\left(1-\frac1x\right)=\arctan x\] for all real $x\ne 0.$ (As usual, $y=\arctan x$ means $-\pi/2<y<\pi/2$ and $\tan y=x.$) Find \[\int_0^1f(x)\,dx.\]

MIPT Undergraduate Contest 2019, 2.3

Let $A$ and $B$ be rectangles in the plane and $f : A \rightarrow B$ be a mapping which is uniform on the interior of $A$, maps the boundary of $A$ homeomorphically to the boundary of $B$ by mapping the sides of $A$ to corresponding sides in $B$. Prove that $f$ is an affine transformation.

2013 Balkan MO Shortlist, A7

Suppose that $k$ is a positive integer. A bijective map $f : Z \to Z$ is said to be $k$-[i]jumpy [/i] if $|f(z) - z| \le k$ for all integers $z$. Is it that case that for every $k$, each $k$-jumpy map is a composition of $1$-jumpy maps? [i]It is well known that this is the case when the support of the map is finite.[/i]