This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

2019 Caucasus Mathematical Olympiad, 3

Find all positive integers $n\geqslant 2$ such that there exists a permutation $a_1$, $a_2$, $a_3$, \ldots, $a_{2n}$ of the numbers $1, 2, 3, \ldots, 2n$ satisfying $$a_1\cdot a_2 + a_3\cdot a_4 + \ldots + a_{2n-3} \cdot a_{2n-2} = a_{2n-1} \cdot a_{2n}.$$

1975 IMO Shortlist, 2

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

1984 IMO Shortlist, 17

In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$

2010 Postal Coaching, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2023 pOMA, 1

Let $n$ be a positive integer. Marc has $2n$ boxes, and in particular, he has one box filled with $k$ apples for each $k=1,2,3,\ldots,2n$. Every day, Marc opens a box and eats all the apples in it. However, if he eats strictly more than $2n+1$ apples in two consecutive days, he gets stomach ache. Prove that Marc has exactly $2^n$ distinct ways of choosing the boxes so that he eats all the apples but doesn't get stomach ache.

2001 BAMO, 5

For each positive integer $n$, let $a_n$ be the number of permutations $\tau$ of $\{1, 2, ... , n\}$ such that $\tau (\tau (\tau (x))) = x$ for $x = 1, 2, ..., n$. The first few values are $a_1 = 1, a_2 = 1, a_3 = 3, a_4 = 9$. Prove that $3^{334}$ divides $a_{2001}$. (A permutation of $\{1, 2, ... , n\}$ is a rearrangement of the numbers $\{1, 2, ... , n\}$ or equivalently, a one-to-one and onto function from $\{1, 2, ... , n\}$ to $\{1, 2, ... , n\}$. For example, one permutation of $\{1, 2, 3\}$ is the rearrangement $\{2, 1, 3\}$, which is equivalent to the function $\sigma : \{1, 2, 3\} \to \{1, 2, 3\}$ defined by $\sigma (1) = 2, \sigma (2) = 1, \sigma (3) = 3$.)

2009 Brazil Team Selection Test, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2017 Kyiv Mathematical Festival, 1

Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have two new neighbours and exactly one third of the dwarves have only one new neighbour, if the number of the dwarves is a) 9; b) 12?

1980 Swedish Mathematical Competition, 2

$a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$, $a_7$ and $b_1$, $b_2$, $b_3$, $b_4$, $b_5$, $b_6$, $b_7$ are two permutations of $1, 2, 3, 4, 5, 6, 7$. Show that $|a_1 - b_1|$, $|a_2 - b_2|$, $|a_3 - b_3|$, $|a_4 - b_4|$, $|a_5 - b_5|$, $|a_6 - b_6|$, $|a_7 - b_7|$ are not all different.

2018 IMAR Test, 2

Let $P$ be a non-zero polynomial with non-negative real coefficients, let $N$ be a positive integer, and let $\sigma$ be a permutation of the set $\{1,2,...,n\}$. Determine the least value the sum \[\sum_{i=1}^{n}\frac{P(x_i^2)}{P(x_ix_{\sigma(i)})}\] may achieve, as $x_1,x_2,...,x_n$ run through the set of positive real numbers. [i]Fedor Petrov[/i]

2016 Saudi Arabia GMO TST, 3

Find all positive integer $n$ such that there exists a permutation $(a_1, a_2,...,a_n)$ of $(1, 2,3,..., n)$ satisfying the condition: $a_1 + a_2 +... + a_k$ is divisible by $k$ for each $k = 1, 2,3,..., n$.

2024 Bangladesh Mathematical Olympiad, P6

Let $a_1, a_2, \ldots, a_{2024}$ be a permutation of $1, 2, \ldots, 2024$. Find the minimum possible value of\[\sum_{i=1} ^{2023} \Big[(a_i+a_{i+1})\Big(\frac{1}{a_i}+\frac{1}{a_{i+1}}\Big)+\frac{1}{a_ia_{i+1}}\Big]\] [i]Proposed by Md. Ashraful Islam Fahim[/i]

2005 IMO Shortlist, 7

Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$. Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have \[ n\mid a_i \minus{} b_i \minus{} c_i \] [i]Proposed by Ricky Liu & Zuming Feng, USA[/i]

2009 Serbia Team Selection Test, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2013 Saudi Arabia Pre-TST, 4.3

How many permutations $(s_1, s_2,...,s_n) $of $(1,2 ,...,n)$ are there satisfying the condition $s_i > s_j$ for all $i \ge j + 3$ when $n = 5$ and when $n = 7$?

2017 Pan-African Shortlist, I4

Find the maximum and minimum of the expression \[ \max(a_1, a_2) + \max(a_2, a_3), + \dots + \max(a_{n-1}, a_n) + \max(a_n, a_1), \] where $(a_1, a_2, \dots, a_n)$ runs over the set of permutations of $(1, 2, \dots, n)$.

2006 Korea Junior Math Olympiad, 1

$a_1, a_2,...,a_{2006}$ is a permutation of $1,2,...,2006$. Prove that $\prod_{i = 1}^{2006} (a_{i}^2-i) $ is a multiple of $3$. ($0$ is counted as a multiple of $3$)

2010 Germany Team Selection Test, 3

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$. [i]Proposed by Jozsef Pelikan, Hungary[/i]

2002 Singapore MO Open, 3

Let $n$ be a positive integer. Determine the smallest value of the sum $a_1b_1+a_2b_2+...+a_{2n+2}b_{2n+2}$ where $(a_1,a_2,...,a_{2n+2})$ and $(b_1,b_2,...,b_{2n+2})$ are rearrangements of the binomial coefficients $2n+1 \choose 0$, $2n+1 \choose 1$,...,$2n+1 \choose 2n+1$. Justify your answer

2024 Miklos Schweitzer, 4

Let $\pi$ be a given permutation of the set $\{1, 2, \dots, n\}$. Determine the smallest possible value of \[ \sum_{i=1}^n |\pi(i) - \sigma(i)|, \] where $\sigma$ is a permutation chosen from the set of all $n$-cycles. Express the result in terms of the number and lengths of the cycles in the disjoint cycle decomposition of $\pi$, including the fixed points.

2014 IFYM, Sozopol, 4

Let $A$ be the set of permutations $a=(a_1,a_2,…,a_n)$ of $M=\{1,2,…n\}$ with the following property: There doesn’t exist a subset $S$ of $M$ such that $a(S)=S$. For $\forall$ such permutation $a$ let $d(a)=\sum_{k=1}^n (a_k-k)^2$ . Determine the smallest value of $d(a)$.

2009 Romania National Olympiad, 3

Let be a natural number $ n, $ a permutation $ \sigma $ of order $ n, $ and $ n $ nonnegative real numbers $ a_1,a_2,\ldots , a_n. $ Prove the following inequality. $$ \left( a_1^2+a_{\sigma (1)} \right)\left( a_2^2+a_{\sigma (2)} \right)\cdots \left( a_n^2+a_{\sigma (n)} \right)\ge \left( a_1^2+a_1 \right)\left( a_2^2+a_{2} \right)\cdots \left( a_n^2+a_n \right) $$

1992 IMO Longlists, 41

Let $S$ be a set of positive integers $n_1, n_2, \cdots, n_6$ and let $n(f)$ denote the number $n_1n_{f(1)} +n_2n_{f(2)} +\cdots+n_6n_{f(6)}$, where $f$ is a permutation of $\{1, 2, . . . , 6\}$. Let \[\Omega=\{n(f) | f \text{ is a permutation of } \{1, 2, . . . , 6\} \} \] Give an example of positive integers $n_1, \cdots, n_6$ such that $\Omega$ contains as many elements as possible and determine the number of elements of $\Omega$.

2024 Romanian Master of Mathematics, 2

Consider an odd prime $p$ and a positive integer $N < 50p$. Let $a_1, a_2, \ldots , a_N$ be a list of positive integers less than $p$ such that any specific value occurs at most $\frac{51}{100}N$ times and $a_1 + a_2 + \cdots· + a_N$ is not divisible by $p$. Prove that there exists a permutation $b_1, b_2, \ldots , b_N$ of the $a_i$ such that, for all $k = 1, 2, \ldots , N$, the sum $b_1 + b_2 + \cdots + b_k$ is not divisible by $p$. [i]Will Steinberg, United Kingdom[/i]

KoMaL A Problems 2019/2020, A. 759

We choose a random permutation of $1,2,\ldots,n$ with uniform distribution. Prove that the expected value of the length of the longest increasing subsequence in the permutation is at least $\sqrt{n}.$