This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 99

2016 Singapore Junior Math Olympiad, 5

Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $200$ distinct points. (Note that for $3$ distinct points, the minimum number of lines is $3$ and for $4$ distinct points, the minimum is $4$)

2001 Singapore Senior Math Olympiad, 2

Let $n$ be a positive integer, and let $f(n) =1^n + 2^{n-1} + 3^{n-2}+ 4^{n-3}+... + (n-1)^2 + n^1$ Find the smallest possible value of $\frac{f(n+2)}{f(n)}$ .Justify your answer.

Novosibirsk Oral Geo Oly IX, 2017.1

Tags: geometry , grid , min
Petya and Vasya live in neighboring houses (see the plan in the figure). Vasya lives in the fourth entrance. It is known that Petya runs to Vasya by the shortest route (it is not necessary walking along the sides of the cells) and it does not matter from which side he runs around his house. Determine in which entrance he lives Petya . [img]https://cdn.artofproblemsolving.com/attachments/b/1/741120341a54527b179e95680aaf1c4b98ff84.png[/img]

2007 Portugal MO, 6

Tags: geometry , min , max , distance
In a village, the maximum distance between two houses is $M$ and the minimum distance is $m$. Prove that if the village has $6$ houses, then $\frac{M}{m} \ge \sqrt3$.

2005 Thailand Mathematical Olympiad, 21

Compute the minimum value of $cos(a-b) + cos(b-c) + cos(c-a)$ as $a,b,c$ ranges over the real numbers.

1968 Swedish Mathematical Competition, 5

Let $a, b$ be non-zero integers. Let $m(a, b)$ be the smallest value of $\cos ax + \cos bx$ (for real $x$). Show that for some $r$, $m(a, b) \le r < 0$ for all $a, b$.

2019 Federal Competition For Advanced Students, P2, 6

Find the smallest possible positive integer n with the following property: For all positive integers $x, y$ and $z$ with $x | y^3$ and $y | z^3$ and $z | x^3$ always to be true that $xyz| (x + y + z) ^n$. (Gerhard J. Woeginger)

1969 Swedish Mathematical Competition, 4

Define $g(x)$ as the largest value of$ |y^2 - xy|$ for $y$ in $[0, 1]$. Find the minimum value of $g$ (for real $x$).

1977 Spain Mathematical Olympiad, 7

The numbers $A_1 , A_2 ,... , A_n$ are given. Prove, without calculating derivatives, that the value of $X$ that minimizes the sum $(X - A_1)^2 + (X -A_2)^2 + ...+ (X - A_n)^2$ is precisely the arithmetic mean of the given numbers.

1961 Czech and Slovak Olympiad III A, 4

Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.

2003 Swedish Mathematical Competition, 1

If $x, y, z, w$ are nonnegative real numbers satisfying \[\left\{ \begin{array}{l}y = x - 2003 \\ z = 2y - 2003 \\ w = 3z - 2003 \\ \end{array} \right. \] find the smallest possible value of $x$ and the values of $y, z, w$ corresponding to it.

2019 Dutch IMO TST, 2

Determine all $4$-tuples $(a,b, c, d)$ of positive real numbers satisfying $a + b +c + d = 1$ and $\max (\frac{a^2}{b},\frac{b^2}{a}) \cdot \max (\frac{c^2}{d},\frac{d^2}{c}) = (\min (a + b, c + d))^4$

2009 Postal Coaching, 1

Find the minimum value of the expression $f(a, b, c) = (a + b)^4 + (b + c)^4 + (c + a)^4 - \frac47 (a^4 + b^4 + c^4)$, as $a, b, c$ varies over the set of all real numbers

2013 Junior Balkan Team Selection Tests - Romania, 3

Tags: min , max , inequalities , algebra
Find the minimum and the maximum value of the expression $\sqrt{4 -a^2} +\sqrt{4 -b^2} +\sqrt{4 -c^2}$ where $a,b, c$ are positive real numbers satisfying the condition $a^2 + b^2 + c^2=6$

Estonia Open Junior - geometry, 2004.1.2

Tags: geometry , min , area , circles
Diameter $AB$ is drawn to a circle with radius $1$. Two straight lines $s$ and $t$ touch the circle at points $A$ and $B$, respectively. Points $P$ and $Q$ are chosen on the lines $s$ and $t$, respectively, so that the line $PQ$ touches the circle. Find the smallest possible area of the quadrangle $APQB$.

2015 Czech-Polish-Slovak Junior Match, 5

Find the smallest real constant $p$ for which the inequality holds $\sqrt{ab}- \frac{2ab}{a + b} \le p \left( \frac{a + b}{2} -\sqrt{ab}\right)$ with any positive real numbers $a, b$.

2018 Estonia Team Selection Test, 3

Tags: sum , algebra , inequalities , max , min
Given a real number $c$ and an integer $m, m \ge 2$. Real numbers $x_1, x_2,... , x_m$ satisfy the conditions $x_1 + x_2 +...+ x_m = 0$ and $\frac{x^2_1 + x^2_2 + ...+ x^2_m}{m}= c$. Find max $(x_1, x_2,..., x_m)$ if it is known to be as small as possible.

2015 Dutch IMO TST, 5

Let $N$ be the set of positive integers. Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers

1964 Swedish Mathematical Competition, 1

Find the side lengths of the triangle $ABC$ with area $S$ and $\angle BAC = x$ such that the side $BC$ is as short as possible.

2017 Purple Comet Problems, 27

Tags: algebra , min
Find the minimum value of $4(x^2 + y^2 + z^2 + w^2) + (xy - 7)^2 + (yz - 7)^2 + (zw - 7)^2 + (wx - 7)^2$ as $x, y, z$, and $w$ range over all real numbers.

2020 Nordic, 1

For a positive integer $n$, denote by $g(n)$ the number of strictly ascending triples chosen from the set $\{1, 2, ..., n\}$. Find the least positive integer $n$ such that the following holds:[i] The number $g(n)$ can be written as the product of three different prime numbers which are (not necessarily consecutive) members in an arithmetic progression with common difference $336$.[/i]

2014 Thailand Mathematical Olympiad, 5

Determine the maximal value of $k$ such that the inequality $$\left(k +\frac{a}{b}\right) \left(k + \frac{b}{c}\right)\left(k + \frac{c}{a}\right) \le \left( \frac{a}{b}+ \frac{b}{c}+ \frac{c}{a}\right) \left( \frac{b}{a}+ \frac{c}{b}+ \frac{a}{c}\right)$$ holds for all positive reals $a, b, c$.

1964 Swedish Mathematical Competition, 5

$a_1, a_2, ... , a_n$ are constants such that $f(x) = 1 + a_1 cos x + a_2 cos 2x + ...+ a_n cos nx \ge 0$ for all $x$. We seek estimates of $a_1$. If $n = 2$, find the smallest and largest possible values of $a_1$. Find corresponding estimates for other values of $n$.

2016 Peru IMO TST, 4

Let $N$ be the set of positive integers. Find all the functions $f: N\to N$ with $f (1) = 2$ and such that $max \{f(m)+f(n), m+n\}$ divides $min\{2m+2n,f (m+ n)+1\}$ for all $m, n$ positive integers

1995 Austrian-Polish Competition, 8

Consider the cube with the vertices at the points $(\pm 1, \pm 1, \pm 1)$. Let $V_1,...,V_{95}$ be arbitrary points within this cube. Denote $v_i = \overrightarrow{OV_i}$, where $O = (0,0,0)$ is the origin. Consider the $2^{95}$ vectors of the form $s_1v_1 + s_2v_2 +...+ s_{95}v_{95}$, where $s_i = \pm 1$. (a) If $d = 48$, prove that among these vectors there is a vector $w = (a, b, c)$ such that $a^2 + b^2 + c^2 \le 48$. (b) Find a smaller $d$ (the smaller, the better) with the same property.