Found problems: 99
1968 Swedish Mathematical Competition, 5
Let $a, b$ be non-zero integers. Let $m(a, b)$ be the smallest value of $\cos ax + \cos bx$ (for real $x$).
Show that for some $r$, $m(a, b) \le r < 0$ for all $a, b$.
1996 Israel National Olympiad, 6
Let $x,y,z$ be real numbers with $|x|,|y|,|z| > 2$. What is the smallest possible value of $|xyz+2(x+y+z)|$ ?
2014 Czech-Polish-Slovak Junior Match, 6
Determine the largest and smallest fractions $F = \frac{y-x}{x+4y}$
if the real numbers $x$ and $y$ satisfy the equation $x^2y^2 + xy + 1 = 3y^2$.
2020 Kyiv Mathematical Festival, 2
Mummy-trolley huts are located on a straight line at points with coordinates $x_1, x_2,...., x_n$. In this village are going to build $3$ stores $A, B$ and $C$, of which will be brought every day to all Moomin-trolls chocolates, bread and water. For the delivery of chocolate, the store takes the distance from the store to the hut, raised to the square; for bread delivery , take the distance from the store to the hut; for water delivery take distance $1$, if the distance is greater than $1$ km, but do not take anything otherwise.
a) Where to build each of the stores so that the total cost of all Moomin-trolls for delivery wasthe smallest?
b) Where to place the TV tower, if the fee for each Moomin-troll is the maximum distance from the TV tower to the farthest hut from it?
c) How will the answer change if the Moomin-troll huts are not located in a straight line, and on the plane?
[hide=original wording]
На прямiй розташованi хатинки Мумi-тролей в точках з координатами x1, x2, . . . , xn. В цьому селi бираються побудувати 3 магазина A, B та C, з яких будуть кожен день привозити всiм Мумi-тролям шоколадки, хлiб та воду. За доставку шоколадки мага- зин бере вiдстань вiд магазину до хатинки, пiднесену до квадрату; за доставку хлiба – вiдстань вiд магазину до хатинки; за доставку води беруть 1, якщо вiдстань бiльша 1 км, та нiчого не беруть в супротивному випадку.
1. Де побудувати кожний з магазинiв, щоб загальнi витрати всiх Мумi-тролей на доставку були найменшими?
2. Де розташувати телевежу, якщо плата для кожного Мумi-троля – максимальна вiдстань вiд телевежi до самої вiддаленої вiд неї хатинки?
3. Як змiниться вiдповiдь, якщо хатинки Мумi-тролей розташованi не на прямiй, а на площинi?[/hide]
2005 Thailand Mathematical Olympiad, 21
Compute the minimum value of $cos(a-b) + cos(b-c) + cos(c-a)$ as $a,b,c$ ranges over the real numbers.
1983 Swedish Mathematical Competition, 5
Show that a unit square can be covered with three equal disks with radius less than $\frac{1}{\sqrt{2}}$.
What is the smallest possible radius?
2015 Saudi Arabia IMO TST, 3
Let $a, b,c$ be positive real numbers satisfying the condition $$(x + y + z) \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)= 10$$ Find the greatest value and the least value of
$$T = (x^2 + y^2 + z^2) \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right)$$
Trần Nam Dũng
2020 Nordic, 1
For a positive integer $n$, denote by $g(n)$ the number of strictly ascending triples chosen from the set $\{1, 2, ..., n\}$. Find the least positive integer $n$ such that the following holds:[i] The number $g(n)$ can be written as the product of three different prime numbers which are (not necessarily consecutive) members in an arithmetic progression with common difference $336$.[/i]
2000 Argentina National Olympiad, 6
You have an equilateral paper triangle of area $9$ and fold it in two, following a straight line that passes through the center of the triangle and does not contain any vertex of the triangle. Thus there remains a quadrilateral in which the two pieces overlap, and three triangles without overlaps. Determine the smallest possible value of the quadrilateral area of the overlay.
2019 Dutch IMO TST, 2
Determine all $4$-tuples $(a,b, c, d)$ of positive real numbers satisfying $a + b +c + d = 1$ and
$\max (\frac{a^2}{b},\frac{b^2}{a}) \cdot \max (\frac{c^2}{d},\frac{d^2}{c}) = (\min (a + b, c + d))^4$
1977 Spain Mathematical Olympiad, 7
The numbers $A_1 , A_2 ,... , A_n$ are given. Prove, without calculating derivatives, that the value of $X$ that minimizes the sum $(X - A_1)^2 + (X -A_2)^2 + ...+ (X - A_n)^2$ is precisely the arithmetic mean of the given numbers.
1961 Czech and Slovak Olympiad III A, 4
Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.
2001 Denmark MO - Mohr Contest, 3
In the square $ABCD$ of side length $2$ the point $M$ is the midpoint of $BC$ and $P$ a point on $DC$. Determine the smallest value of $AP+PM$.
[img]https://1.bp.blogspot.com/-WD8WXIE6DK4/XzcC9GYsa6I/AAAAAAAAMXg/vl2OrbAdChEYrRpemYmj6DiOrdOSqj_IgCLcBGAsYHQ/s178/2001%2BMohr%2Bp3.png[/img]
2019 Saudi Arabia Pre-TST + Training Tests, 5.3
Let $x, y, z, a,b, c$ are pairwise different integers from the set $\{1,2,3, 4,5,6\}$.
Find the smallest possible value for expression $xyz + abc - ax - by - cz$.
1996 Estonia National Olympiad, 2
For which positive $x$ does the expression $x^{1000}+x^{900}+x^{90}+x^6+\frac{1996}{x}$ attain the smallest value?
2012 Belarus Team Selection Test, 1
A cubic trinomial $x^3 + px + q$ with integer coefficients $p$ and $q$ is said to be [i]irrational [/i] if it has three pairwise distinct real irrational roots $a_1,a_2, a_3$
Find all irrational cubic trinomials for which the value of $|a_1| + [a_2| + |a_3|$ is the minimal possible.
(E. Barabanov)
2014 Thailand Mathematical Olympiad, 5
Determine the maximal value of $k$ such that the inequality
$$\left(k +\frac{a}{b}\right) \left(k + \frac{b}{c}\right)\left(k + \frac{c}{a}\right)
\le \left( \frac{a}{b}+ \frac{b}{c}+ \frac{c}{a}\right) \left( \frac{b}{a}+ \frac{c}{b}+ \frac{a}{c}\right)$$
holds for all positive reals $a, b, c$.
2020 Adygea Teachers' Geometry Olympiad, 4
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.
2019 Dutch IMO TST, 2
Determine all $4$-tuples $(a,b, c, d)$ of positive real numbers satisfying $a + b +c + d = 1$ and
$\max (\frac{a^2}{b},\frac{b^2}{a}) \cdot \max (\frac{c^2}{d},\frac{d^2}{c}) = (\min (a + b, c + d))^4$
2015 Czech-Polish-Slovak Junior Match, 5
Find the smallest real constant $p$ for which the inequality holds $\sqrt{ab}- \frac{2ab}{a + b} \le p \left( \frac{a + b}{2} -\sqrt{ab}\right)$ with any positive real numbers $a, b$.
Cono Sur Shortlist - geometry, 1993.14
Prove that the sum of the squares of the distances from a point $P$ to the vertices of a triangle $ABC$ is minimum when $ P$ is the centroid of the triangle.
Estonia Open Junior - geometry, 2004.1.2
Diameter $AB$ is drawn to a circle with radius $1$. Two straight lines $s$ and $t$ touch the circle at points $A$ and $B$, respectively. Points $P$ and $Q$ are chosen on the lines $s$ and $t$, respectively, so that the line $PQ$ touches the circle. Find the smallest possible area of the quadrangle $APQB$.
2010 Puerto Rico Team Selection Test, 4
Find the largest possible value in the real numbers of the term $$\frac{3x^2 + 16xy + 15y^2}{x^2 + y^2}$$ with $x^2 + y^2 \ne 0$.
2018 Estonia Team Selection Test, 3
Given a real number $c$ and an integer $m, m \ge 2$. Real numbers $x_1, x_2,... , x_m$ satisfy the conditions $x_1 + x_2 +...+ x_m = 0$ and $\frac{x^2_1 + x^2_2 + ...+ x^2_m}{m}= c$. Find max $(x_1, x_2,..., x_m)$ if it is known to be as small as possible.
2004 Estonia National Olympiad, 2
The positive differences $a_i-a_j$ of five different positive integers $a_1, a_2, a_3, a_4, a_5$ are all different (there are altogether $10$ such differences). Find the least possible value of the largest number among the $a_i$.