Found problems: 175
2016 Bangladesh Mathematical Olympiad, 5
Suppose there are $m$ Martians and $n$ Earthlings at an intergalactic peace conference. To ensure the Martians stay peaceful at the conference, we must make sure that no two Martians sit together, such that between any two Martians there is always at least one Earthling.
(a) Suppose all $m + n$ Martians and Earthlings are seated in a line. How many ways can the Earthlings and Martians be seated in a line?
(b) Suppose now that the $m+n$ Martians and Earthlings are seated around a circular round-table. How many ways can the Earthlings and Martians be seated around the round-table?
2009 Serbia National Math Olympiad, 4
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
2016 Estonia Team Selection Test, 9
Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence.
Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.
1997 IMO, 3
Let $ x_1$, $ x_2$, $ \ldots$, $ x_n$ be real numbers satisfying the conditions:
\[ \left\{\begin{array}{cccc} |x_1 \plus{} x_2 \plus{} \cdots \plus{} x_n | & \equal{} & 1 & \ \\
|x_i| & \leq & \displaystyle \frac {n \plus{} 1}{2} & \ \textrm{ for }i \equal{} 1, 2, \ldots , n. \end{array} \right.
\]
Show that there exists a permutation $ y_1$, $ y_2$, $ \ldots$, $ y_n$ of $ x_1$, $ x_2$, $ \ldots$, $ x_n$ such that
\[ | y_1 \plus{} 2 y_2 \plus{} \cdots \plus{} n y_n | \leq \frac {n \plus{} 1}{2}.
\]
1974 Czech and Slovak Olympiad III A, 3
Let $m\ge10$ be any positive integer such that all its decimal digits are distinct. Denote $f(m)$ sum of positive integers created by all non-identical permutations of digits of $m,$ e.g. \[f(302)=320+023+032+230+203=808.\] Determine all positive integers $x$ such that \[f(x)=138\,012.\]
2017 Romania Team Selection Test, P2
Let $n$ be a positive integer, and let $S_n$ be the set of all permutations of $1,2,...,n$. let $k$ be a non-negative integer, let $a_{n,k}$ be the number of even permutations $\sigma$ in $S_n$ such that $\sum_{i=1}^{n}|\sigma(i)-i|=2k$ and $b_{n,k}$ be the number of odd permutations $\sigma$ in $S_n$ such that $\sum_{i=1}^{n}|\sigma(i)-i|=2k$. Evaluate $a_{n,k}-b_{n,k}$.
[i]* * *[/i]
1999 Kazakhstan National Olympiad, 8
Let $ {{a} _ {1}}, {{a} _ {2}}, \ldots, {{a} _ {n}} $ be permutation of numbers $ 1,2, \ldots, n $, where $ n \geq 2 $.
Find the maximum value of the sum $$ S (n) = | {{a} _ {1}} - {{a} _ {2}} | + | {{a} _ {2}} - {{a} _ {3}} | + \cdots + | {{a} _ {n-1}} - {{a} _ {n}} |. $$
2020 OMMock - Mexico National Olympiad Mock Exam, 2
We say that a permutation $(a_1, \dots, a_n)$ of $(1, 2, \dots, n)$ is good if the sums $a_1 + a_2 + \dots + a_i$ are all distinct modulo $n$. Prove that there exists a positive integer $n$ such that there are at least $2020$ good permutations of $(1, 2, \dots, n)$.
[i]Proposed by Ariel García[/i]
2017 China National Olympiad, 4
Let $n \geq 2$ be a natural number. For any two permutations of $(1,2,\cdots,n)$, say $\alpha = (a_1,a_2,\cdots,a_n)$ and $\beta = (b_1,b_2,\cdots,b_n),$ if there exists a natural number $k \leq n$ such that
$$b_i = \begin{cases} a_{k+1-i}, & \text{ }1 \leq i \leq k; \\ a_i, & \text{} k < i \leq n, \end{cases}$$
we call $\alpha$ a friendly permutation of $\beta$.
Prove that it is possible to enumerate all possible permutations of $(1,2,\cdots,n)$ as $P_1,P_2,\cdots,P_m$ such that for all $i = 1,2,\cdots,m$, $P_{i+1}$ is a friendly permutation of $P_i$ where $m = n!$ and $P_{m+1} = P_1$.
2011 Gheorghe Vranceanu, 1
Let $ \sigma_1 ,\sigma_2 $ be two permutations of order $ n $ such that $ \sigma_1 (k)=\sigma_2 (n-k+1) $ for $ k=\overline{1,n} . $ Prove that the number of inversions of $ \sigma_1 $ plus the number of inversions of $ \sigma_2 $ is $ \frac{n(n+1)}{2} . $
2023 Regional Competition For Advanced Students, 3
Determine all natural numbers $n \ge 2$ with the property that there are two permutations $(a_1, a_2,... , a_n) $ and $(b_1, b_2,... , b_n)$ of the numbers $1, 2,..., n$ such that $(a_1 + b_1, a_2 +b_2,..., a_n + b_n)$ are consecutive natural numbers.
[i](Walther Janous)[/i]
2011 Ukraine Team Selection Test, 12
Let $ n $ be a natural number. Consider all permutations $ ({{a} _ {1}}, \ \ldots, \ {{a} _ {2n}}) $ of the first $ 2n $ natural numbers such that the numbers $ | {{a} _ {i +1}} - {{a} _ {i}} |, \ i = 1, \ \ldots, \ 2n-1, $ are pairwise different. Prove that $ {{a} _ {1}} - {{a} _ {2n}} = n $ if and only if $ 1 \le {{a} _ {2k}} \le n $ for all $ k = 1, \ \ldots, \ n $.
2023 IMAR Test, P3
Let $p{}$ be an odd prime number. Determine whether there exists a permutation $a_1,\ldots,a_p$ of $1,\ldots,p$ satisfying \[(i-j)a_k+(j-k)a_i+(k-i)a_j\neq 0,\] for all pairwise distinct $i,j,k.$
2022 Singapore MO Open, Q4
Let $n,k$, $1\le k\le n$ be fixed integers. Alice has $n$ cards in a row, where the card has position $i$ has the label $i+k$ (or $i+k-n$ if $i+k>n$). Alice starts by colouring each card either red or blue. Afterwards, she is allowed to make several moves, where each move consists of choosing two cards of different colours and swapping them. Find the minimum number of moves she has to make (given that she chooses the colouring optimally) to put the cards in order (i.e. card $i$ is at position $i$).
NOTE: edited from original phrasing, which was ambiguous.
2020 IMEO, Problem 4
Anna and Ben are playing with a permutation $p$ of length $2020$, initially $p_i = 2021 - i$ for $1\le i \le 2020$. Anna has power $A$, and Ben has power $B$. Players are moving in turns, with Anna moving first.
In his turn player with power $P$ can choose any $P$ elements of the permutation and rearrange them in the way he/she wants.
Ben wants to sort the permutation, and Anna wants to not let this happen. Determine if Ben can make sure that the permutation will be sorted (of form $p_i = i$ for $1\le i \le 2020$) in finitely many turns, if
a) $A = 1000, B = 1000$
b) $A = 1000, B = 1001$
c) $A = 1000, B = 1002$
[i]Anton Trygub[/i]
2009 Belarus Team Selection Test, 3
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]
2018 Brazil Undergrad MO, 3
How many permutations $a_1, a_2, a_3, a_4$ of $1, 2, 3, 4$ satisfy the condition that for $k = 1, 2, 3,$
the list $a_1,. . . , a_k$ contains a number greater than $k$?
2024 Romanian Master of Mathematics, 1
Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$
chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A [i]jump[/i] is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row.
Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right.
[i]Israel[/i]
2000 China National Olympiad, 1
Given an ordered $n$-tuple $A=(a_1,a_2,\cdots ,a_n)$ of real numbers, where $n\ge 2$, we define $b_k=\max{a_1,\ldots a_k}$ for each k. We define $B=(b_1,b_2,\cdots ,b_n)$ to be the “[i]innovated tuple[/i]” of $A$. The number of distinct elements in $B$ is called the “[i]innovated degree[/i]” of $A$.
Consider all permutations of $1,2,\ldots ,n$ as an ordered $n$-tuple. Find the arithmetic mean of the first term of the permutations whose innovated degrees are all equal to $2$
1957 Kurschak Competition, 3
What is the largest possible value of $|a_1 - 1| + |a_2-2|+...+ |a_n- n|$ where $a_1, a_2,..., a_n$ is a permutation of $1,2,..., n$?
1998 IMO Shortlist, 3
Cards numbered 1 to 9 are arranged at random in a row. In a move, one may choose any block of consecutive cards whose numbers are in ascending or descending order, and switch the block around. For example, 9 1 $\underline{6\ 5\ 3}$ $2\ 7\ 4\ 8$ may be changed to $9 1$ $\underline{3\ 5\ 6}$ $2\ 7\ 4\ 8$. Prove that in at most 12 moves, one can arrange the 9 cards so that their numbers are in ascending or descending order.
1975 IMO, 1
We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$
2005 Gheorghe Vranceanu, 1
Let be a natural number $ n\ge 2 $ and the $ n\times n $ matrix whose entries at the $ \text{i-th} $ line and $ \text{j-th} $ column is $ \min (i,j) . $ Calculate:
[b]a)[/b] its determinant.
[b]b)[/b] its inverse.
2010 Germany Team Selection Test, 3
Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$.
[i]Proposed by Jozsef Pelikan, Hungary[/i]