This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 175

2024 Kyiv City MO Round 2, Problem 4

There are $n \geq 1$ notebooks, numbered from $1$ to $n$, stacked in a pile. Zahar repeats the following operation: he randomly chooses a notebook whose number $k$ does not correspond to its location in this stack, counting from top to bottom, and returns it to the $k$th position, counting from the top, without changing the location of the other notebooks. If there is no such notebook, he stops. Is it guaranteed that Zahar will arrange all the notebooks in ascending order of numbers in a finite number of operations? [i]Proposed by Zahar Naumets[/i]

2016 Estonia Team Selection Test, 9

Let $n$ be a positive integer such that there exists a positive integer that is less than $\sqrt{n}$ and does not divide $n$. Let $(a_1, . . . , a_n)$ be an arbitrary permutation of $1, . . . , n$. Let $a_{i1} < . . . < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > . . . > a_{jl}$ be its maximal decreasing subsequence. Prove that tuples $(a_{i1}, . . . , a_{ik})$ and $(a_{j1}, . . . , a_{jl} )$ altogether contain at least one number that does not divide $n$.

1997 IMO Shortlist, 21

Let $ x_1$, $ x_2$, $ \ldots$, $ x_n$ be real numbers satisfying the conditions: \[ \left\{\begin{array}{cccc} |x_1 \plus{} x_2 \plus{} \cdots \plus{} x_n | & \equal{} & 1 & \ \\ |x_i| & \leq & \displaystyle \frac {n \plus{} 1}{2} & \ \textrm{ for }i \equal{} 1, 2, \ldots , n. \end{array} \right. \] Show that there exists a permutation $ y_1$, $ y_2$, $ \ldots$, $ y_n$ of $ x_1$, $ x_2$, $ \ldots$, $ x_n$ such that \[ | y_1 \plus{} 2 y_2 \plus{} \cdots \plus{} n y_n | \leq \frac {n \plus{} 1}{2}. \]

1984 Tournament Of Towns, (077) 2

A set of numbers $a_1, a_2 , . . . , a_{100}$ is obtained by rearranging the numbers $1 , 2,..., 100$ . Form the numbers $b_1=a_1$ $b_2= a_1 + a_2$ $b_3=a_1 + a_2 + a_3$ ... $b_{100}=a_1 + a_2 + ...+a_{100}$ Prove that among the remainders on dividing the numbers by $100 , 11$ of them are different . ( L . D . Kurlyandchik , Leningrad)

1968 IMO Shortlist, 20

Given $n \ (n \geq 3)$ points in space such that every three of them form a triangle with one angle greater than or equal to $120^\circ$, prove that these points can be denoted by $A_1,A_2, \ldots,A_n$ in such a way that for each $i, j, k, 1 \leq i < j < k \leq n$, angle $A_iA_jA_k$ is greater than or equal to $120^\circ . $

1967 Czech and Slovak Olympiad III A, 3

Consider a table of cyclic permutations ($n\ge2$) \[ \begin{matrix} 1, & 2, & \ldots, & n-1, & n \\ 2, & 3, & \ldots, & n, & 1, \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n, & 1, & \ldots, & n-2, & n-1. \end{matrix} \] Then multiply each number of the first row by that number of the $k$-th row that is in the same column. Sum all these products and denote $s_k$ the result (e.g. $s_2=1\cdot2+2\cdot3+\cdots+(n-1)\cdot n+n\cdot1$). a) Find a recursive relation for $s_k$ in terms of $s_{k-1}$ and determine the explicit formula for $s_k$. b) Determine both an index $k$ and the value of $s_k$ such that the sum $s_k$ is minimal.

2023 Indonesia MO, 6

Determine the number of permutations $a_1, a_2, \dots, a_n$ of $1, 2, \dots, n$ such that for every positive integer $k$ with $1 \le k \le n$, there exists an integer $r$ with $0 \le r \le n - k$ which satisfies \[ 1 + 2 + \dots + k = a_{r+1} + a_{r+2} + \dots + a_{r+k}. \]

2013 India IMO Training Camp, 1

Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order. We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.

1963 IMO Shortlist, 6

Five students $ A, B, C, D, E$ took part in a contest. One prediction was that the contestants would finish in the order $ ABCDE$. This prediction was very poor. In fact, no contestant finished in the position predicted, and no two contestants predicted to finish consecutively actually did so. A second prediction had the contestants finishing in the order $ DAECB$. This prediction was better. Exactly two of the contestants finished in the places predicted, and two disjoint pairs of students predicted to finish consecutively actually did so. Determine the order in which the contestants finished.

2006 Germany Team Selection Test, 3

Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$. Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have \[ n\mid a_i \minus{} b_i \minus{} c_i \] [i]Proposed by Ricky Liu & Zuming Feng, USA[/i]

2006 Korea Junior Math Olympiad, 8

De ne the set $F$ as the following: $F = \{(a_1,a_2,... , a_{2006}) : \forall i = 1, 2,..., 2006, a_i \in \{-1,1\}\}$ Prove that there exists a subset of $F$, called $S$ which satis es the following: $|S| = 2006$ and for all $(a_1,a_2,... , a_{2006})\in F$ there exists $(b_1,b_2,... , b_{2006}) \in S$, such that $\Sigma_{i=1} ^{2006}a_ib_i = 0$.

2010 Dutch BxMO TST, 5

For any non-negative integer $n$, we say that a permutation $(a_0,a_1,...,a_n)$ of $\{0,1,..., n\} $ is quadratic if $k + a_k$ is a square for $k = 0, 1,...,n$. Show that for any non-negative integer $n$, there exists a quadratic permutation of $\{0,1,..., n\}$.

2011 IFYM, Sozopol, 4

Let $n$ be some natural number. One boss writes $n$ letters a day numerated from 1 to $n$ consecutively. When he writes a letter he piles it up (on top) in a box. When his secretary is free, she gets the letter on the top of the pile and prints it. Sometimes the secretary isn’t able to print the letter before her boss puts another one or more on the pile in the box. Though she is always able to print all of the letters at the end of the day. A permutation is called [i]“printable”[/i] if it is possible for the letters to be printed in this order. Find a formula for the number of [i]“printable”[/i] permutations.

2019 Brazil Undergrad MO, 6

In a hidden friend, suppose no one takes oneself. We say that the hidden friend has "marmalade" if there are two people $A$ and $ B$ such that A took $B$ and $ B $ took $A$. For each positive integer n, let $f (n)$ be the number of hidden friends with n people where there is no “marmalade”, i.e. $f (n)$ is equal to the number of permutations $\sigma$ of {$1, 2,. . . , n$} such that: *$\sigma (i) \neq i$ for all $i=1,2,...,n$ * there are no $ 1 \leq i <j \leq n $ such that $ \sigma (i) = j$ and $\sigma (j) = i. $ Determine the limit $\lim_{n \to + \infty} \frac{f(n)}{n!}$

1999 Miklós Schweitzer, 4

A permutation f of the set of integers is called bounded if | x - f (x) | is bounded. Bounded permutations with permutation multiplication form a group W. Show that the additive group of rational numbers is not isomorphic to any subgroup of W.

2019 Cono Sur Olympiad, 3

Let $n\geq 3$ an integer. Determine whether there exist permutations $(a_1,a_2, \ldots, a_n)$ of the numbers $(1,2,\ldots, n)$ and $(b_1, b_2, \ldots, b_n)$ of the numbers $(n+1,n+2,\ldots, 2n)$ so that $(a_1b_1, a_2b_2, \ldots a_nb_n)$ is a strictly increasing arithmetic progression.

2021 Poland - Second Round, 6

Let $p\ge 5$ be a prime number. Consider the function given by the formula $$f (x_1,..., x_p) = x_1 + 2x_2 +... + px_p.$$ Let $A_k$ denote the set of all these permutations $(a_1,..., a_p)$ of the set $\{1,..., p\}$, for integer number $f (a_1,..., a_p) - k$ is divisible by $p$ and $a_i \ne i$ for all $i \in \{1,..., p\}$. Prove that the sets $A_1$ and $A_4$ have the same number of elements.

1997 ITAMO, 5

Let $X$ be the set of natural numbers whose all digits in the decimal representation are different. For $n \in N$, denote by $A_n$ the set of numbers whose digits are a permutation of the digits of $n$, and $d_n$ be the greatest common divisor of the numbers in $A_n$. (For example, $A_{1120} =\{112,121,...,2101,2110\}$, so $d_{1120} = 1$.) Find the maximum possible value of $d_n$.

2023 239 Open Mathematical Olympiad, 5

On a table, cards numbered $1, 2, \ldots , 200$ are laid out in a row in some order, and a line is drawn on the table between some two of them. It is allowed to swap two adjacent cards if the number on the left is greater than the number on the right. After a few such moves, the cards were arranged in ascending order. Prove we have swapped pairs of cards separated by the line no more than 1884 times.

2012 BMT Spring, 9

A permutation of a set is a bijection from the set to itself. For example, if $\sigma$ is the permutation $1 7\mapsto 3$, $2 \mapsto 1$, and $3 \mapsto 2$, and we apply it to the ordered triplet $(1, 2, 3)$, we get the reordered triplet $(3, 1, 2)$. Let $\sigma$ be a permutation of the set $\{1, ... , n\}$. Let $$\theta_k(m) = \begin{cases} m + 1 & \text{for} \,\, m < k\\ 1 & \text{for} \,\, m = k\\ m & \text{for} \,\, m > k\end{cases}$$ Call a finite sequence $\{a_i\}^{j}_{i=1}$ a disentanglement of $\sigma$ if $\theta_{a_j} \circ ...\circ \theta_{a_j} \circ \sigma$ is the identity permutation. For example, when $\sigma = (3, 2, 1)$, then $\{2, 3\}$ is a disentaglement of $\sigma$. Let $f(\sigma)$ denote the minimum number $k$ such that there is a disentanglement of $\sigma$ of length $k$. Let $g(n)$ be the expected value for $f(\sigma)$ if $\sigma$ is a random permutation of $\{1, ... , n\}$. What is $g(6)$?

2005 Bosnia and Herzegovina Team Selection Test, 5

If for an arbitrary permutation $(a_1,a_2,...,a_n)$ of set ${1,2,...,n}$ holds $\frac{{a_k}^2}{a_{k+1}}\leq k+2$, $k=1,2,...,n-1$, prove that $a_k=k$ for $k=1,2,...,n$

2022 Philippine MO, 2

The PMO Magician has a special party game. There are $n$ chairs, labelled $1$ to $n$. There are $n$ sheets of paper, labelled $1$ to $n$. [list] [*] On each chair, she attaches exactly one sheet whose number does not match the number on the chair. [*] She then asks $n$ party guests to sit on the chairs so that each chair has exactly one occupant. [*] Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number. [/list] Show that if $1 < m \leq n$, where $m$ is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly $m$ claps.

1988 IMO Shortlist, 4

An $ n \times n, n \geq 2$ chessboard is numbered by the numbers $ 1, 2, \ldots, n^2$ (and every number occurs). Prove that there exist two neighbouring (with common edge) squares such that their numbers differ by at least $ n.$

2010 Dutch BxMO TST, 5

For any non-negative integer $n$, we say that a permutation $(a_0,a_1,...,a_n)$ of $\{0,1,..., n\} $ is quadratic if $k + a_k$ is a square for $k = 0, 1,...,n$. Show that for any non-negative integer $n$, there exists a quadratic permutation of $\{0,1,..., n\}$.

2016 AIME Problems, 8

Tags: permutation
For a permutation $p = (a_1,a_2,\ldots,a_9)$ of the digits $1,2,\ldots,9$, let $s(p)$ denote the sum of the three $3$-digit numbers $a_1a_2a_3$, $a_4a_5a_6$, and $a_7a_8a_9$. Let $m$ be the minimum value of $s(p)$ subject to the condition that the units digit of $s(p)$ is $0$. Let $n$ denote the number of permutations $p$ with $s(p) = m$. Find $|m - n|$.