This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2017 Saint Petersburg Mathematical Olympiad, 7

In a country, some pairs of cities are connected by one-way roads. It turns out that every city has at least two out-going and two in-coming roads assigned to it, and from every city one can travel to any other city by a sequence of roads. Prove that it is possible to delete a cyclic route so that it is still possible to travel from any city to any other city.

2016 Saint Petersburg Mathematical Olympiad, 6

Incircle of $\triangle ABC$ touch $AC$ at $D$. $BD$ intersect incircle at $E$. Points $F,G$ on incircle are such points, that $FE \parallel BC,GE \parallel AB$. $I_1,I_2$ are incenters of $DEF,DEG$. Prove that angle bisector of $\angle GDF$ passes though the midpoint of $I_1I_2 $.