This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2021 Taiwan TST Round 1, A

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

1995 Chile National Olympiad, 3

If $p (x) = c_0 + c_1x + c_2x^2 + c_3x^3$ is a polynomial with integer coefficients with $a, b,c$ integers and different from each other, prove that it cannot happen simultaneously that $p (a) = b$, $p (b) = c$ and $p (c) = a$.

2012 IFYM, Sozopol, 4

Given distinct prime numbers $p$ and $q$ and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.

2009 Baltic Way, 3

Let $ n$ be a given positive integer. Show that we can choose numbers $ c_k\in\{\minus{}1,1\}$ ($ i\le k\le n$) such that \[ 0\le\sum_{k\equal{}1}^nc_k\cdot k^2\le4.\]

1983 IMO Shortlist, 19

Let $(F_n)_{n\geq 1} $ be the Fibonacci sequence $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n (n \geq 1),$ and $P(x)$ the polynomial of degree $990$ satisfying \[ P(k) = F_k, \qquad \text{ for } k = 992, . . . , 1982.\] Prove that $P(1983) = F_{1983} - 1.$

2010 Albania Team Selection Test, 4

With $\sigma (n)$ we denote the sum of natural divisors of the natural number $n$. Prove that, if $n$ is the product of different prime numbers of the form $2^k-1$ for $k \in \mathbb{N}$($Mersenne's$ prime numbers) , than $\sigma (n)=2^m$, for some $m \in \mathbb{N}$. Is the inverse statement true?

2010 Iran MO (2nd Round), 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

1992 IMO Longlists, 35

Let $ f(x)$ be a polynomial with rational coefficients and $ \alpha$ be a real number such that \[ \alpha^3 \minus{} \alpha \equal{} [f(\alpha)]^3 \minus{} f(\alpha) \equal{} 33^{1992}.\] Prove that for each $ n \geq 1,$ \[ \left [ f^{n}(\alpha) \right]^3 \minus{} f^{n}(\alpha) \equal{} 33^{1992},\] where $ f^{n}(x) \equal{} f(f(\cdots f(x))),$ and $ n$ is a positive integer.

IV Soros Olympiad 1997 - 98 (Russia), 11.8

Sum of all roots of the equation $$cos^{100} x + a_1 cos^{99} x + a_2cos^{98} x +... + a_99 cos x+ a_{100} = 0$$, in interval $\left[\pi, \frac{3\pi}{2} \right]$, is equal to $21\pi$, and the sum of all roots of the equation $$sin^{100} x + a_1 sin^{99} x + a_2sin ^{98} x +... + a_99sin x+ a_{100} = 0$$, in the same interval, is equal to $24\pi $. How many roots does the first equation have on the segment $\left[ \frac{\pi}{2}, \pi\right]$?

2024 India IMOTC, 10

Let $r>0$ be a real number. We call a monic polynomial with complex coefficients $r$-[i]good[/i] if all of its roots have absolute value at most $r$. We call a monic polynomial with complex coefficients [i]primordial[/i] if all of its coefficients have absolute value at most $1$. a) Prove that any $1$-good polynomial has a primordial multiple. b) If $r>1$, prove that there exists an $r$-good polynomial that does not have a primordial multiple. [i]Proposed by Pranjal Srivastava[/i]

1992 IMO Longlists, 51

Let $ f, g$ and $ a$ be polynomials with real coefficients, $ f$ and $ g$ in one variable and $ a$ in two variables. Suppose \[ f(x) \minus{} f(y) \equal{} a(x, y)(g(x) \minus{} g(y)) \forall x,y \in \mathbb{R}\] Prove that there exists a polynomial $ h$ with $ f(x) \equal{} h(g(x)) \text{ } \forall x \in \mathbb{R}.$

2009 IMC, 4

Let $p(z)=a_0+a_1z+a_2z^2+\cdots+a_nz^n$ be a complex polynomial. Suppose that $1=c_0\ge c_1\ge \cdots \ge c_n\ge 0$ is a sequence of real numbers which form a convex sequence. (That is $2c_k\le c_{k-1}+c_{k+1}$ for every $k=1,2,\cdots ,n-1$ ) and consider the polynomial \[ q(z)=c_0a_0+c_1a_1z+c_2a_2z^2+\cdots +c_na_nz^n \] Prove that : \[ \max_{|z|\le 1}q(z)\le \max_{|z|\le 1}p(z) \]

2025 Vietnam National Olympiad, 1

Let $P(x) = x^4-x^3+x$. a) Prove that for all positive real numbers $a$, the polynomial $P(x) - a$ has a unique positive zero. b) A sequence $(a_n)$ is defined by $a_1 = \dfrac{1}{3}$ and for all $n \geq 1$, $a_{n+1}$ is the positive zero of the polynomial $P(x) - a_n$. Prove that the sequence $(a_n)$ converges, and find the limit of the sequence.

1997 Federal Competition For Advanced Students, P2, 6

For every natural number $ n$, find all polynomials $ x^2\plus{}ax\plus{}b$, where $ a^2 \ge 4b$, that divide $ x^{2n}\plus{}ax^n\plus{}b$.

2012 NZMOC Camp Selection Problems, 4

Let $p(x)$ be a polynomial with integer coefficients, and let $a, b$ and $c$ be three distinct integers. Show that it is not possible to have $p(a) = b$, $p(b) = c$, and $p(c) = a$.

2008 IMS, 1

Let $ A_1,A_2,\dots,A_n$ be idempotent matrices with real entries. Prove that: \[ \mbox{N}(A_1)\plus{}\mbox{N}(A_2)\plus{}\dots\plus{}\mbox{N}(A_n)\geq \mbox{rank}(I\minus{}A_1A_2\dots A_n)\] $ \mbox{N}(A)$ is $ \mbox{dim}(\mbox{ker(A)})$

2011 IMC, 2

Does there exist a real $3\times 3$ matrix $A$ such that $\text{tr}(A)=0$ and $A^2+A^t=I?$ ($\text{tr}(A)$ denotes the trace of $A,\ A^t$ the transpose of $A,$ and $I$ is the identity matrix.) [i]Proposed by Moubinool Omarjee, Paris[/i]

1975 Poland - Second Round, 6

Let $ f(x) $ and $ g(x) $ be polynomials with integer coefficients. Prove that if for every integer value $ n $ the number $ g(n) $ is divisible by the number $ f(n) $, then $ g(x) = f(x)\cdot h(x) $, where $ h(x) $ is a polynomial,. Show with an example that the coefficients of the polynomial $ h(x) $ do not have to be integer.

2010 AMC 10, 9

A [i]palindrome[/i], such as $ 83438$, is a number that remains the same when its digits are reversed. The numbers $ x$ and $ x \plus{} 32$ are three-digit and four-digit palindromes, respectively. What is the sum of the digits of x? $ \textbf{(A)}\ 20\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 22\qquad \textbf{(D)}\ 23\qquad \textbf{(E)}\ 24$

2023 Azerbaijan IZhO TST, 2

P(x) is polynomial such that, polynomial P(P(x)) is strictly monotone in all real number line. Prove that polynomial P(x) is also strictly monotone in all real number line.

1985 IMO, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_1}+Q_{i_2}+\ldots+Q_{i_n})\ge o(Q_{i_1}). \]

2018 Morocco TST., 1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

2025 Romania National Olympiad, 4

Let $p$ be an odd prime number, and $k$ be an odd number not divisible by $p$. Consider a field $K$ be a field with $kp+1$ elements, and $A = \{x_1,x_2, \dots, x_t\}$ be the set of elements of $K^*$, whose order is not $k$ in the multiplicative group $(K^*,\cdot)$. Prove that the polynomial $P(X)=(X+x_1)(X+x_2)\dots(X+x_t)$ has at least $p$ coefficients equal to $1$.

1992 India Regional Mathematical Olympiad, 1

Determine the set of integers $n$ for which $n^2+19n+92$ is a square.

2014 Online Math Open Problems, 22

Let $f(x)$ be a polynomial with integer coefficients such that $f(15) f(21) f(35) - 10$ is divisible by $105$. Given $f(-34) = 2014$ and $f(0) \ge 0$, find the smallest possible value of $f(0)$. [i]Proposed by Michael Kural and Evan Chen[/i]