This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1992 IMO Longlists, 36

Find all rational solutions of \[a^2 + c^2 + 17(b^2 + d^2) = 21,\]\[ab + cd = 2.\]

1990 IMO Longlists, 22

Let $ f(0) \equal{} f(1) \equal{} 0$ and \[ f(n\plus{}2) \equal{} 4^{n\plus{}2} \cdot f(n\plus{}1) \minus{} 16^{n\plus{}1} \cdot f(n) \plus{} n \cdot 2^{n^2}, \quad n \equal{} 0, 1, 2, \ldots\] Show that the numbers $ f(1989), f(1990), f(1991)$ are divisible by $ 13.$

2002 All-Russian Olympiad, 1

The polynomials $P$, $Q$, $R$ with real coefficients, one of which is degree $2$ and two of degree $3$, satisfy the equality $P^2+Q^2=R^2$. Prove that one of the polynomials of degree $3$ has three real roots.

2004 Miklós Schweitzer, 7

Suppose that the closed subset $K$ of the sphere $$S^2=\{ (x,y,z)\in \mathbb{R}^3\colon x^2+y^2+z^2=1 \}$$ is symmetric with respect to the origin and separates any two antipodal points in $S^2 \backslash K$. Prove that for any positive $\varepsilon$ there exists a homogeneous polynomial $P$ of odd degree such that the Hausdorff distance between $$Z(P)=\{ (x,y,z)\in S^2 \colon P(x,y,z)=0\}$$ and $K$ is less than $\varepsilon$.

1983 IMO Longlists, 23

Let $p$ and $q$ be integers. Show that there exists an interval $I$ of length $1/q$ and a polynomial $P$ with integral coefficients such that \[ \left|P(x)-\frac pq \right| < \frac{1}{q^2}\]for all $x \in I.$

2023 CIIM, 5

Given a positive integer $k > 1$, find all positive integers $n$ such that the polynomial $$P(z) = z^n + \sum_{j=0}^{2^k-2} z^j = 1 +z +z^2 + \cdots +z^{2^k-2} + z^n$$ has a complex root $w$ such that $|w| = 1$.

2014 AMC 12/AHSME, 19

There are exactly $N$ distinct rational numbers $k$ such that $|k|<200$ and \[5x^2+kx+12=0\] has at least one integer solution for $x$. What is $N$? $\textbf{(A) }6\qquad \textbf{(B) }12\qquad \textbf{(C) }24\qquad \textbf{(D) }48\qquad \textbf{(E) }78\qquad$

2018 Mathematical Talent Reward Programme, SAQ: P 2

$P(x)$ is polynomial with real coefficients such that $\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z}$. Prove that every coefficients of $P(x)$ is rational numbers.

2007 Iran Team Selection Test, 2

Find all monic polynomials $f(x)$ in $\mathbb Z[x]$ such that $f(\mathbb Z)$ is closed under multiplication. [i]By Mohsen Jamali[/i]

2003 AMC 12-AHSME, 12

What is the largest integer that is a divisor of \[ (n\plus{}1)(n\plus{}3)(n\plus{}5)(n\plus{}7)(n\plus{}9) \]for all positive even integers $ n$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 15 \qquad \textbf{(E)}\ 165$

2008 Putnam, B4

Let $ p$ be a prime number. Let $ h(x)$ be a polynomial with integer coefficients such that $ h(0),h(1),\dots, h(p^2\minus{}1)$ are distinct modulo $ p^2.$ Show that $ h(0),h(1),\dots, h(p^3\minus{}1)$ are distinct modulo $ p^3.$

2002 Romania Team Selection Test, 2

The sequence $ (a_n)$ is defined by: $ a_0\equal{}a_1\equal{}1$ and $ a_{n\plus{}1}\equal{}14a_n\minus{}a_{n\minus{}1}$ for all $ n\ge 1$. Prove that $ 2a_n\minus{}1$ is a perfect square for any $ n\ge 0$.

2016 All-Russian Olympiad, 5

Let $n$ be a positive integer and let $k_0,k_1, \dots,k_{2n}$ be nonzero integers such that $k_0+k_1 +\dots+k_{2n}\neq 0$. Is it always possible to a permutation $(a_0,a_1,\dots,a_{2n})$ of $(k_0,k_1,\dots,k_{2n})$ so that the equation \begin{align*} a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_0=0 \end{align*} has not integer roots?

2001 India IMO Training Camp, 1

For any positive integer $n$, show that there exists a polynomial $P(x)$ of degree $n$ with integer coefficients such that $P(0),P(1), \ldots, P(n)$ are all distinct powers of $2$.

2007 Harvard-MIT Mathematics Tournament, 9

The complex numbers $\alpha_1$, $\alpha_2$, $\alpha_3$, and $\alpha_4$ are the four distinct roots of the equation $x^4+2x^3+2=0$. Determine the unordered set \[\{\alpha_1\alpha_2+\alpha_3\alpha_4,\alpha_1\alpha_3+\alpha_2\alpha_4,\alpha_1\alpha_4+\alpha_2\alpha_3\}.\]

2007 Indonesia TST, 3

Let $a, b, c$ be positive reals such that $a + b + c = 1$ and $P(x) = 3^{2005}x^{2007 }- 3^{2005}x^{2006} - x^2$. Prove that $P(a) + P(b) + P(c) \le -1$.

2010 Finnish National High School Mathematics Competition, 3

Let $P(x)$ be a polynomial with integer coefficients and roots $1997$ and $2010$. Suppose further that $|P(2005)|<10$. Determine what integer values $P(2005)$ can get.

2014 India IMO Training Camp, 1

Find all polynomials $f(x)$ with integer coefficients such that $f(n)$ and $f(2^{n})$ are co-prime for all natural numbers $n$.

2012 Greece National Olympiad, 2

Find all the non-zero polynomials $P(x),Q(x)$ with real coefficients and the minimum degree,such that for all $x \in \mathbb{R}$: \[ P(x^2)+Q(x)=P(x)+x^5Q(x) \]

2004 Korea National Olympiad, 2

$x$ and $y$ are positive and relatively prime and $z$ is an integer. They satisfy $(5z-4x)(5z-4y)=25xy$. Show that at least one of $10z+x+y$ or quotient of this number divided by $3$ is a square number (i.e. prove that $10z+x+y$ or integer part of $\frac{10z+x+y}{3}$ is a square number).

2000 AMC 12/AHSME, 22

The graph below shows a portion of the curve defined by the quartic polynomial $ P(x) \equal{} x^4 \plus{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d$. Which of the following is the smallest? $ \textbf{(A)}\ P( \minus{} 1)$ $ \textbf{(B)}\ \text{The product of the zeros of }P$ $ \textbf{(C)}\ \text{The product of the non \minus{} real zeros of }P$ $ \textbf{(D)}\ \text{The sum of the coefficients of }P$ $ \textbf{(E)}\ \text{The sum of the real zeros of }P$ [asy] size(170); defaultpen(linewidth(0.7)+fontsize(7));size(250); real f(real x) { real y=1/4; return 0.2125(x*y)^4-0.625(x*y)^3-1.6125(x*y)^2+0.325(x*y)+5.3; } draw(graph(f,-10.5,19.4)); draw((-13,0)--(22,0)^^(0,-10.5)--(0,15)); int i; filldraw((-13,10.5)--(22,10.5)--(22,20)--(-13,20)--cycle,white, white); for(i=-3; i<6; i=i+1) { if(i!=0) { draw((4*i,0)--(4*i,-0.2)); label(string(i), (4*i,-0.2), S); }} for(i=-5; i<6; i=i+1){ if(i!=0) { draw((0,2*i)--(-0.2,2*i)); label(string(2*i), (-0.2,2*i), W); }} label("0", origin, SE);[/asy]

2000 Saint Petersburg Mathematical Olympiad, 11.4

Let $P(x)=x^{2000}-x^{1000}+1$. Prove that there don't exist 8002 distinct positive integers $a_1,\dots,a_{8002}$ such that $a_ia_ja_k|P(a_i)P(a_j)P(a_k)$ for all $i\neq j\neq k$. [I]Proposed by A. Baranov[/i]

Kvant 2019, M2585

Let $a_1,...,a_n$ be $n$ real numbers. If for each odd positive integer $k\leqslant n$ we have $a_1^k+a_2^k+\ldots+a_n^k=0$, then for each odd positive integer $k$ we have $a_1^k+a_2^k+\ldots+a_n^k=0$. [i]Proposed by M. Didin[/i]

2014 Contests, 1

Find, with proof, all real numbers $x$ satisfying $x = 2\left( 2 \left( 2\left( 2\left( 2x-1 \right)-1 \right)-1 \right)-1 \right)-1$. [i]Proposed by Evan Chen[/i]

Russian TST 2017, P1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]