This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2015 Belarus Team Selection Test, 3

Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers $x$ and $y$ one has \[|y^2-P(x)|\le 2|x|\quad\text{if and only if}\quad |x^2-P(y)|\le 2|y|.\] Determine all possible values of $P(0)$. [i]Proposed by Belgium[/i]

1984 Vietnam National Olympiad, 2

Given two real numbers $a, b$ with $a \neq 0$, find all polynomials $P(x)$ which satisfy \[xP(x - a) = (x - b)P(x).\]

2013 AIME Problems, 12

Let $S$ be the set of all polynomials of the form $z^3+az^2+bz+c$, where $a$, $b$, and $c$ are integers. Find the number of polynomials in $S$ such that each of its roots $z$ satisfies either $\left\lvert z \right\rvert = 20$ or $\left\lvert z \right\rvert = 13$.

2016 USA TSTST, 1

Tags: polynomial
Let $A = A(x,y)$ and $B = B(x,y)$ be two-variable polynomials with real coefficients. Suppose that $A(x,y)/B(x,y)$ is a polynomial in $x$ for infinitely many values of $y$, and a polynomial in $y$ for infinitely many values of $x$. Prove that $B$ divides $A$, meaning there exists a third polynomial $C$ with real coefficients such that $A = B \cdot C$. [i]Proposed by Victor Wang[/i]

2015 Indonesia MO Shortlist, A7

Suppose $P(n) $ is a nonconstant polynomial where all of its coefficients are nonnegative integers such that \[ \sum_{i=1}^n P(i) | nP(n+1) \] for every $n \in \mathbb{N}$. Prove that there exists an integer $k \ge 0$ such that \[ P(n) = \binom{n+k}{n-1} P(1) \] for every $n \in \mathbb{N}$.

2012 Turkey MO (2nd round), 1

Find all polynomials with integer coefficients such that for all positive integers $n$ satisfies $P(n!)=|P(n)|!$

1969 Spain Mathematical Olympiad, 6

Given a polynomial of real coefficients P(x) , can it be affirmed that for any real value of x is true of one of the following inequalities: $$P(x) \le P(x)^2; \,\,\, P(x) < 1 + P(x)^2; \,\,\,P(x) \le \frac12 +\frac12 P(x)^2.$$ Find a simple general procedure (among the many existing ones) that allows, provided we are given two polynomials $P(x)$ and $Q(x)$ , find another $M(x)$ such that for every value of $x$, at the same time $-M(x) < P(x)<M(x)$ and $-M(x)< Q(x)<M(x)$.

2006 Romania National Olympiad, 1

Let $\displaystyle \mathcal K$ be a finite field. Prove that the following statements are equivalent: (a) $\displaystyle 1+1=0$; (b) for all $\displaystyle f \in \mathcal K \left[ X \right]$ with $\displaystyle \textrm{deg} \, f \geq 1$, $\displaystyle f \left( X^2 \right)$ is reducible.

PEN D Problems, 13

Let $\Gamma$ consist of all polynomials in $x$ with integer coefficients. For $f$ and $g$ in $\Gamma$ and $m$ a positive integer, let $f \equiv g \pmod{m}$ mean that every coefficient of $f-g$ is an integral multiple of $m$. Let $n$ and $p$ be positive integers with $p$ prime. Given that $f,g,h,r$ and $s$ are in $\Gamma$ with $rf+sg\equiv 1 \pmod{p}$ and $fg \equiv h \pmod{p}$, prove that there exist $F$ and $G$ in $\Gamma$ with $F \equiv f \pmod{p}$, $G \equiv g \pmod{p}$, and $FG \equiv h \pmod{p^n}$.

2023 Azerbaijan Senior NMO, 3

Let $m$ be a positive integer. Find polynomials $P(x)$ with real coefficients such that $$(x-m)P(x+2023) = xP(x)$$ is satisfied for all real numbers $x.$

1987 Tournament Of Towns, (144) 1

Suppose $p(x)$ is a polynomial with integer coefficients. It is known that $p(a) - p(b) = 1$ (where $a$ and $b$ are integers). Prove that $a$ and $b$ differ by $1$ . (Folklore)

2013 EGMO, 4

Find all positive integers $a$ and $b$ for which there are three consecutive integers at which the polynomial \[ P(n) = \frac{n^5+a}{b} \] takes integer values.

2023 VN Math Olympiad For High School Students, Problem 4

Prove that: a polynomial is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x].$

1986 All Soviet Union Mathematical Olympiad, 418

The square polynomial $x^2+ax+b+1$ has natural roots. Prove that $(a^2+b^2)$ is a composite number.

2006 Bulgaria Team Selection Test, 3

[b]Problem 6.[/b] Let $p>2$ be prime. Find the number of the subsets $B$ of the set $A=\{1,2,\ldots,p-1\}$ such that, the sum of the elements of $B$ is divisible by $p.$ [i] Ivan Landgev[/i]

2010 AMC 10, 25

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2017 China Team Selection Test, 2

Find the least positive number m such that for any polynimial f(x) with real coefficients, there is a polynimial g(x) with real coefficients (degree not greater than m) such that there exist 2017 distinct number $a_1,a_2,...,a_{2017}$ such that $g(a_i)=f(a_{i+1})$ for i=1,2,...,2017 where indices taken modulo 2017.

2001 Taiwan National Olympiad, 1

Let $A$ be a set with at least $3$ integers, and let $M$ be the maximum element in $A$ and $m$ the minimum element in $A$. it is known that there exist a polynomial $P$ such that: $m<P(a)<M$ for all $a$ in $A$. And also $p(m)<p(a)$ for all $a$ in $A-(m,M)$. Prove that $n<6$ and there exist integers $b$ and $c$ such that $p(x)+x^2+bx+c$ is cero in $A$.

2002 India National Olympiad, 3

If $x$, $y$ are positive reals such that $x + y = 2$ show that $x^3y^3(x^3+ y^3) \leq 2$.

1978 Chisinau City MO, 160

Factor the polynomial $P (x) = 1 + x +x^2+...+x^{2^k-1}$

India EGMO 2025 TST, 2

Two positive integers are called anagrams if every decimal digit occurs the same number of times in each of them (not counting the leading zeroes). Find all non-constant polynomials $P$ with non-negative integer coefficients so that whenever $a$ and $b$ are anagrams, $P(a)$ and $P(b)$ are anagrams as well. Proposed by Sutanay Bhattacharya

2024 All-Russian Olympiad, 3

Let $n$ be a positive integer. Ilya and Sasha both choose a pair of different polynomials of degree $n$ with real coefficients. Lenya knows $n$, his goal is to find out whether Ilya and Sasha have the same pair of polynomials. Lenya selects a set of $k$ real numbers $x_1<x_2<\dots<x_k$ and reports these numbers. Then Ilya fills out a $2 \times k$ table: For each $i=1,2,\dots,k$ he writes a pair of numbers $P(x_i),Q(x_i)$ (in any of the two possible orders) intwo the two cells of the $i$-th column, where $P$ and $Q$ are his polynomials. Sasha fills out a similar table. What is the minimal $k$ such that Lenya can surely achieve the goal by looking at the tables? [i]Proposed by L. Shatunov[/i]

2013 QEDMO 13th or 12th, 10

Let $p$ be a prime number gretater then $3$. What is the number of pairs $(m, n)$ of integers with $0 <m <n <p$, for which the polynomial $x^p + px^n + px^m +1$ is not a product of two non-constant polynomials with integer coefficients can be written?

1949 Miklós Schweitzer, 5

Let $ f(x)$ be a polynomial of second degree the roots of which are contained in the interval $ [\minus{}1,\plus{}1]$ and let there be a point $ x_0\in [\minus{}1.\plus{}1]$ such that $ |f(x_0)|\equal{}1$. Prove that for every $ \alpha \in [0,1]$, there exists a $ \zeta \in [\minus{}1,\plus{}1]$ such that $ |f'(\zeta)|\equal{}\alpha$ and that this statement is not true if $ \alpha>1$.

2007 AIME Problems, 14

Let $f(x)$ be a polynomial with real coefficients such that $f(0) = 1,$ $f(2)+f(3)=125,$ and for all $x$, $f(x)f(2x^{2})=f(2x^{3}+x).$ Find $f(5).$