This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1989 Federal Competition For Advanced Students, P2, 1

Consider the set $ S_n$ of all the $ 2^n$ numbers of the type $ 2\pm \sqrt{2 \pm \sqrt {2 \pm ...}},$ where number $ 2$ appears $ n\plus{}1$ times. $ (a)$ Show that all members of $ S_n$ are real. $ (b)$ Find the product $ P_n$ of the elements of $ S_n$.

2015 Postal Coaching, Problem 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]

2014 Greece Team Selection Test, 2

Find all real non-zero polynomials satisfying $P(x)^3+3P(x)^2=P(x^{3})-3P(-x)$ for all $x\in\mathbb{R}$.

1946 Moscow Mathematical Olympiad, 110

Prove that after completing the multiplication and collecting the terms $$(1 - x + x^2 - x^3 +... - x^{99} + x^{100})(1 + x + x^2 + ...+ x^{99} + x^{100})$$ has no monomials of odd degree.

1990 IMO Shortlist, 7

Let $ f(0) \equal{} f(1) \equal{} 0$ and \[ f(n\plus{}2) \equal{} 4^{n\plus{}2} \cdot f(n\plus{}1) \minus{} 16^{n\plus{}1} \cdot f(n) \plus{} n \cdot 2^{n^2}, \quad n \equal{} 0, 1, 2, \ldots\] Show that the numbers $ f(1989), f(1990), f(1991)$ are divisible by $ 13.$

2012 Putnam, 1

Let $S$ be a class of functions from $[0,\infty)$ to $[0,\infty)$ that satisfies: (i) The functions $f_1(x)=e^x-1$ and $f_2(x)=\ln(x+1)$ are in $S;$ (ii) If $f(x)$ and $g(x)$ are in $S,$ the functions $f(x)+g(x)$ and $f(g(x))$ are in $S;$ (iii) If $f(x)$ and $g(x)$ are in $S$ and $f(x)\ge g(x)$ for all $x\ge 0,$ then the function $f(x)-g(x)$ is in $S.$ Prove that if $f(x)$ and $g(x)$ are in $S,$ then the function $f(x)g(x)$ is also in $S.$

2006 Harvard-MIT Mathematics Tournament, 1

A nonzero polynomial $f(x)$ with real coefficients has the property that $f(x)=f^\prime(x)f^{\prime\prime}(x)$. What is the leading coefficient of $f(x)$?

2018 AIME Problems, 6

A real number $a$ is chosen randomly and uniformly from the interval $[-20, 18]$. The probability that the roots of the polynomial \[x^4 + 2ax^3 + (2a-2)x^2 + (-4a+3)x - 2\] are all real can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2011 Iran Team Selection Test, 8

Let $p$ be a prime and $k$ a positive integer such that $k \le p$. We know that $f(x)$ is a polynomial in $\mathbb Z[x]$ such that for all $x \in \mathbb{Z}$ we have $p^k | f(x)$. [b](a)[/b] Prove that there exist polynomials $A_0(x),\ldots,A_k(x)$ all in $\mathbb Z[x]$ such that \[ f(x)=\sum_{i=0}^{k} (x^p-x)^ip^{k-i}A_i(x),\] [b](b)[/b] Find a counter example for each prime $p$ and each $k > p$.

2010 Harvard-MIT Mathematics Tournament, 5

Let the functions $f(\alpha,x)$ and $g(\alpha)$ be defined as \[f(\alpha,x)=\dfrac{(\frac{x}{2})^\alpha}{x-1}\qquad\qquad\qquad g(\alpha)=\,\dfrac{d^4f}{dx^4}|_{x=2}\] Then $g(\alpha)$ is a polynomial is $\alpha$. Find the leading coefficient of $g(\alpha)$.

2019 All-Russian Olympiad, 8

Let $P(x)$ be a non-constant polynomial with integer coefficients and let $n$ be a positive integer. The sequence $a_0,a_1,\ldots$ is defined as follows: $a_0=n$ and $a_k=P(a_{k-1})$ for all positive integers $k.$ Assume that for every positive integer $b$ the sequence contains a $b$th power of an integer greater than $1.$ Show that $P(x)$ is linear.

PEN A Problems, 80

Find all pairs of positive integers $m, n \ge 3$ for which there exist infinitely many positive integers $a$ such that \[\frac{a^{m}+a-1}{a^{n}+a^{2}-1}\] is itself an integer.

2003 AMC 10, 18

What is the largest integer that is a divisor of \[ (n\plus{}1)(n\plus{}3)(n\plus{}5)(n\plus{}7)(n\plus{}9) \]for all positive even integers $ n$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 15 \qquad \textbf{(E)}\ 165$

1997 Finnish National High School Mathematics Competition, 1

Determine the real numbers $a$ such that the equation $a 3^x + 3^{-x} = 3$ has exactly one solution $x.$

MathLinks Contest 7th, 5.1

Find all real polynomials $ g(x)$ of degree at most $ n \minus{} 3$, $ n\geq 3$, knowing that all the roots of the polynomial $ f(x) \equal{} x^n \plus{} nx^{n \minus{} 1} \plus{} \frac {n(n \minus{} 1)}2 x^{n \minus{} 2} \plus{} g(x)$ are real.

2009 Today's Calculation Of Integral, 426

Consider the polynomial $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$, with degree less than or equal to 2. When $ f$ varies with subject to the constrain $ f(0) \equal{} 0,\ f(2) \equal{} 2$, find the minimum value of $ S\equal{}\int_0^2 |f'(x)|\ dx$.

2004 Austrian-Polish Competition, 4

Determine all $n \in \mathbb{N}$ for which $n^{10} + n^5 + 1$ is prime.

2015 Junior Balkan Team Selection Tests - Romania, 1

Define the set $M_q=\{x \in \mathbb{Q} \mid x^3-2015x=q \}$ , where $q$ is an arbitrary rational number. [b]a)[/b] Show that there exists values for $q$ such that the set is null as well as values for which it has exactly one element. [b]b)[/b] Determine all the possible values for the cardinality of $M_q$

1980 IMO Shortlist, 12

Find all pairs of solutions $(x,y)$: \[ x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1). \]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, A1

Find the smallest positive integer value of $N$ such that field $K=\mathbb{Q}(\sqrt{N},\ \sqrt{i+1})$, where $i=\sqrt{-1}$, is Galois extension on $\mathbb{Q}$, then find the Galois group $Gal(K/\mathbb{Q}).$

2015 Baltic Way, 18

Let $f(x)=x^n + a_{n-1}x^{n-1} + ...+ a_0 $ be a polynomial of degree $ n\ge 1 $ with $ n$ (not necessarily distinct) integer roots. Assume that there exist distinct primes $p_0,p_1,..,p_{n-1}$ such that $a_i > 1$ is a power of $p_i$, for all $ i=0,1,..,n-1$. Find all possible values of $ n$.

2018 Romanian Master of Mathematics Shortlist, N1

Determine all polynomials $f$ with integer coefficients such that $f(p)$ is a divisor of $2^p-2$ for every odd prime $p$. [I]Proposed by Italy[/i]

2017 Mathematical Talent Reward Programme, SAQ: P 1

A monic polynomial is a polynomial whose highest degree coefficient is 1. Let $P(x)$ and $Q(x)$ be monic polynomial with real coefficients and $degP(x)=degQ(x)=10$. Prove that if the equation $P(x)=Q(x)$ has no real solutions then $P(x+1)=Q(x-1)$ has a real solution

2021 Estonia Team Selection Test, 2

Find all polynomials $P(x)$ with integral coefficients whose values at points $x = 1, 2, . . . , 2021$ are numbers $1, 2, . . . , 2021$ in some order.

1950 Polish MO Finals, 1

Decompose the polynomial $$x^8 + x^4 +1$$ to factors of at most second degree.