This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2022 Tuymaada Olympiad, 2

Given are integers $a, b, c$ and an odd prime $p.$ Prove that $p$ divides $x^2 + y^2 + ax + by + c$ for some integers $x$ and $y.$ [i](A. Golovanov )[/i]

2006 Putnam, A5

Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n.$ Prove that \[\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}}\] is an integer, and determine its value.

2010 China Team Selection Test, 2

Let $M=\{1,2,\cdots,n\}$, each element of $M$ is colored in either red, blue or yellow. Set $A=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n$, $x,y,z$ are of same color$\},$ $B=\{(x,y,z)\in M\times M\times M|x+y+z\equiv 0\mod n,$ $x,y,z$ are of pairwise distinct color$\}.$ Prove that $2|A|\geq |B|$.

2023 Taiwan TST Round 2, N

Find all polynomials $P$ with real coefficients satisfying that there exist infinitely many pairs $(m, n)$ of coprime positives integer such that $P(\frac{m}{n})=\frac{1}{n}$. [i] Proposed by usjl[/i]

2004 AMC 12/AHSME, 23

The polynomial $ x^3\minus{}2004x^2\plus{}mx\plus{}n$ has integer coefficients and three distinct positive zeros. Exactly one of these is an integer, and it is the sum of the other two. How many values of $ n$ are possible? $ \textbf{(A)}\ 250,\!000 \qquad \textbf{(B)}\ 250,\!250 \qquad \textbf{(C)}\ 250,\!500 \qquad \textbf{(D)}\ 250,\!750 \qquad \textbf{(E)}\ 251,\!000$

2009 Germany Team Selection Test, 3

Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If \[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\] then \[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]

2023 Caucasus Mathematical Olympiad, 2

Given are reals $a, b$. Prove that at least one of the equations $x^4-2b^3x+a^4=0$ and $x^4-2a^3x+b^4=0$ has a real root. Proposed by N. Agakhanov

2024 Saint Petersburg Mathematical Olympiad, 6

Polynomial $P(x)$ with integer coefficients is given. For some positive integer $n$ numbers $P(0),P(1),\dots,P(2^n+1)$ are all divisible by $2^{2^n}$. Prove that values of $P(x)$ in all integer points are divisible by $2^{2^n}$.

2011 Postal Coaching, 6

Prove that there exist integers $a, b, c$ all greater than $2011$ such that \[(a+\sqrt{b})^c=\ldots 2010 \cdot 2011\ldots\] [Decimal point separates an integer ending in $2010$ and a decimal part beginning with $2011$.]

2014 Iran MO (3rd Round), 5

We say $p(x,y)\in \mathbb{R}\left[x,y\right]$ is [i]good[/i] if for any $y \neq 0$ we have $p(x,y) = p\left(xy,\frac{1}{y}\right)$ . Prove that there are good polynomials $r(x,y) ,s(x,y)\in \mathbb{R}\left[x,y\right]$ such that for any good polynomial $p$ there is a $f(x,y)\in \mathbb{R}\left[x,y\right]$ such that \[f(r(x,y),s(x,y))= p(x,y)\] [i]Proposed by Mohammad Ahmadi[/i]

2010 Mathcenter Contest, 1

Let $a,b,c\in\mathbb{N}$ prove that if there is a polynomial $P,Q,R\in\mathbb{C}[x]$, which have no common factors and satisfy $$P^a+Q^b=R^c$$ and $$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}>1.$$ [i](tatari/nightmare)[/i]

2008 Mongolia Team Selection Test, 3

Find the maximum number $ C$ such that for any nonnegative $ x,y,z$ the inequality $ x^3 \plus{} y^3 \plus{} z^3 \plus{} C(xy^2 \plus{} yz^2 \plus{} zx^2) \ge (C \plus{} 1)(x^2 y \plus{} y^2 z \plus{} z^2 x)$ holds.

2019 Belarus Team Selection Test, 5.1

A function $f:\mathbb N\to\mathbb N$, where $\mathbb N$ is the set of positive integers, satisfies the following condition: for any positive integers $m$ and $n$ ($m>n$) the number $f(m)-f(n)$ is divisible by $m-n$. Is the function $f$ necessarily a polynomial? (In other words, is it true that for any such function there exists a polynomial $p(x)$ with real coefficients such that $f(n)=p(n)$ for all positive integers $n$?) [i](Folklore)[/i]

2008 VJIMC, Problem 1

Find all complex roots (with multiplicities) of the polynomial $$p(x)=\sum_{n=1}^{2008}(1004-|1004-n|)x^n.$$

2025 Belarusian National Olympiad, 11.1

Numbers $1,\ldots,2025$ are written in a circle in increasing order. For every three consecutive numbers $i,j,k$ we consider the polynomial $(x-i)(x-j)(x-k)$. Let $s(x)$ be the sum of all $2025$ these polynomials. Prove that $s(x)$ has an integral root. [i]A. Voidelevich[/i]

2000 Harvard-MIT Mathematics Tournament, 9

$f$ is a polynomial of degree $n$ with integer coefficients and $f(x)=x^2+1$ for $x=1,2,\cdot ,n$. What are the possible values for $f(0)$?

2015 Romania National Olympiad, 4

Find all non-constant polynoms $ f\in\mathbb{Q} [X] $ that don't have any real roots in the interval $ [0,1] $ and for which there exists a function $ \xi :[0,1]\longrightarrow\mathbb{Q} [X]\times\mathbb{Q} [X], \xi (x):=\left( g_x,h_x \right) $ such that $ h_x(x)\neq 0 $ and $ \int_0^x \frac{dt}{f(t)} =\frac{g_x(x)}{h_x(x)} , $ for all $ x\in [0,1] . $

2019 India IMO Training Camp, P1

Determine all non-constant monic polynomials $f(x)$ with integer coefficients for which there exists a natural number $M$ such that for all $n \geq M$, $f(n)$ divides $f(2^n) - 2^{f(n)}$ [i] Proposed by Anant Mudgal [/i]

2002 Iran MO (3rd Round), 4

$a_{n}$ ($n$ is integer) is a sequence from positive reals that \[a_{n}\geq \frac{a_{n+2}+a_{n+1}+a_{n-1}+a_{n-2}}4\] Prove $a_{n}$ is constant.

2012 ELMO Shortlist, 5

Prove that if $m,n$ are relatively prime positive integers, $x^m-y^n$ is irreducible in the complex numbers. (A polynomial $P(x,y)$ is irreducible if there do not exist nonconstant polynomials $f(x,y)$ and $g(x,y)$ such that $P(x,y) = f(x,y)g(x,y)$ for all $x,y$.) [i]David Yang.[/i]

2015 Iberoamerican Math Olympiad, 3

Let $\alpha$ and $\beta$ be the roots of $x^{2} - qx + 1$, where $q$ is a rational number larger than $2$. Let $s_1 = \alpha + \beta$, $t_1 = 1$, and for all integers $n \geq 2$: $s_n = \alpha^n + \beta^n$ $t_n = s_{n-1} + 2s_{n-2} + \cdot \cdot \cdot + (n - 1)s_{1} + n$ Prove that, for all odd integers $n$, $t_n$ is the square of a rational number.

1996 Austrian-Polish Competition, 3

The polynomials $P_{n}(x)$ are defined by $P_{0}(x)=0,P_{1}(x)=x$ and \[P_{n}(x)=xP_{n-1}(x)+(1-x)P_{n-2}(x) \quad n\geq 2\] For every natural number $n\geq 1$, find all real numbers $x$ satisfying the equation $P_{n}(x)=0$.

1962 All Russian Mathematical Olympiad, 016

Prove that there are no integers $a,b,c,d$ such that the polynomial $ax^3+bx^2+cx+d$ equals $1$ at $x=19$, and equals $2$ at $x=62$.

2008 ISI B.Math Entrance Exam, 2

Suppose that $P(x)$ is a polynomial with real coefficients, such that for some positive real numbers $c$ and $d$, and for all natural numbers $n$, we have $c|n|^3\leq |P(n)|\leq d|n|^3$. Prove that $P(x)$ has a real zero.

Russian TST 2021, P3

Given an integer $n \geqslant 3$ the polynomial $f(x_1, \ldots, x_n)$ with integer coefficients is called [i]good[/i] if $f(0,\ldots, 0) = 0$ and \[f(x_1, \ldots, x_n)=f(x_{\pi_1}, \ldots, x_{\pi_n}),\]for any permutation of $\pi$ of the numbers $1,\ldots, n$. Denote by $\mathcal{J}$ the set of polynomials of the form \[p_1q_1+\cdots+p_mq_m,\]where $m$ is a positive integer and $q_1,\ldots , q_m$ are polynomials with integer coefficients, and $p_1,\ldots , p_m$ are good polynomials. Find the smallest natural number $D{}$ such that each monomial of degree $D{}$ lies in the set $\mathcal{J}$.