Found problems: 3597
1939 Moscow Mathematical Olympiad, 049
Let the product of two polynomials of a variable $x$ with integer coefficients be a polynomial with even coefficients not all of which are divisible by $4$. Prove that all the coefficients of one of the polynomials are even and that at least one of the coefficients of the other polynomial is odd.
1967 IMO Longlists, 5
Solve the system of equations:
$
\begin{matrix}
x^2 + x - 1 = y \\
y^2 + y - 1 = z \\
z^2 + z - 1 = x.
\end{matrix}
$
2002 IMO, 3
Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that \[ \frac{a^m+a-1}{a^n+a^2-1} \] is itself an integer.
[i]Laurentiu Panaitopol, Romania[/i]
2015 International Zhautykov Olympiad, 3
Find all functions $ f\colon \mathbb{R} \to \mathbb{R} $ such that $ f(x^3+y^3+xy)=x^2f(x)+y^2f(y)+f(xy) $, for all $ x,y \in \mathbb{R} $.
2023 Iran MO (3rd Round), 3
For numbers $a,b \in \mathbb{R}$ we consider the sets:
$$A=\{a^n | n \in \mathbb{N}\} , B=\{b^n | n \in \mathbb{N}\}$$
Find all $a,b > 1$ for which there exists two real , non-constant polynomials $P,Q$ with positive leading coefficients st for each $r \in \mathbb{R}$:
$$ P(r) \in A \iff Q(r) \in B$$
2019 VJIMC, 2
A triplet of polynomials $u,v,w \in \mathbb{R}[x,y,z]$ is called [i]smart[/i] if there exists polynomials $P,Q,R\in \mathbb{R}[x,y,z]$ such that the following polynomial identity holds :$$u^{2019}P +v^{2019 }Q+w^{2019} R=2019$$
a) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y+z$$ [i]smart[/i]?
b) Is the triplet of polynomials $$u=x+2y+3 , \;\;\;\; v=y+z+2, \;\;\;\;\;w=x+y-z$$ [i]smart[/i]?
[i]Proposed by Arturas Dubickas (Vilnius University).
[/i]
2010 AIME Problems, 6
Find the smallest positive integer $ n$ with the property that the polynomial $ x^4 \minus{} nx \plus{} 63$ can be written as a product of two nonconstant polynomials with integer coefficients.
Russian TST 2022, P1
Non-zero polynomials $P(x)$, $Q(x)$, and $R(x)$ with real coefficients satisfy the identities
$$ P(x) + Q(x) + R(x) = P(Q(x)) + Q(R(x)) + R(P(x)) = 0. $$
Prove that the degrees of the three polynomials are all even.
1996 Estonia Team Selection Test, 1
Prove that the polynomial $P_n(x)=1+x+\frac{x^2}{2!}+\cdots +\frac{x^n}{n!}$ has no real zeros if $n$ is even and has exatly one real zero if $n$ is odd
2011 AMC 12/AHSME, 24
Let $P(z) = z^8 + (4\sqrt{3} + 6) z^4 - (4\sqrt{3}+7)$. What is the minimum perimeter among all the 8-sided polygons in the complex plane whose vertices are precisely the zeros of $P(z)$?
$ \textbf{(A)}\ 4\sqrt{3}+4 \qquad
\textbf{(B)}\ 8\sqrt{2} \qquad
\textbf{(C)}\ 3\sqrt{2}+3\sqrt{6} \qquad
\textbf{(D)}\ 4\sqrt{2}+4\sqrt{3} \qquad
$
$\textbf{(E)}\ 4\sqrt{3}+6 $
KoMaL A Problems 2022/2023, A. 835
Let $f^{(n)}(x)$ denote the $n^{\text{th}}$ iterate of function $f$, i.e $f^{(1)}(x)=f(x)$, $f^{(n+1)}(x)=f(f^{(n)}(x))$.
Let $p(n)$ be a given polynomial with integer coefficients, which maps the positive integers into the positive integers. Is it possible that the functional equation $f^{(n)}(n)=p(n)$ has exactly one solution $f$ that maps the positive integers into the positive integers?
[i]Submitted by Dávid Matolcsi and Kristóf Szabó, Budapest[/i]
1990 Balkan MO, 2
The polynomial $P(X)$ is defined by $P(X)=(X+2X^{2}+\ldots +nX^{n})^{2}=a_{0}+a_{1}X+\ldots +a_{2n}X^{2n}$. Prove that $a_{n+1}+a_{n+2}+\ldots +a_{2n}=\frac{n(n+1)(5n^{2}+5n+2)}{24}$.
2013 Tuymaada Olympiad, 5
Prove that every polynomial of fourth degree can be represented in the form $P(Q(x))+R(S(x))$, where $P,Q,R,S$ are quadratic trinomials.
[i]A. Golovanov[/i]
[b]EDIT.[/b] It is confirmed that assuming the coefficients to be [b]real[/b], while solving the problem, earned a maximum score.
1976 IMO Longlists, 30
Prove that if $P(x) = (x-a)^kQ(x)$, where $k$ is a positive integer, $a$ is a nonzero real number, $Q(x)$ is a nonzero polynomial, then $P(x)$ has at least $k + 1$ nonzero coefficients.
2016 AIME Problems, 11
Let $P(x)$ be a nonzero polynomial such that $(x-1)P(x+1)=(x+2)P(x)$ for every real $x$, and $\left(P(2)\right)^2 = P(3)$. Then $P(\tfrac72)=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
2017 Princeton University Math Competition, B2
Let $a_1(x), a_2(x)$, and $a_3(x)$ be three polynomials with integer coefficients such that every polynomial with integer coefficients can be written in the form $p_1(x)a_1(x) + p_2(x)a_2(x) + p_3(x)a_3(x)$ for some polynomials $p_1(x), p_2(x), p_3(x)$ with integer coefficients. Show that every polynomial is of the form $p_1(x)a_1(x)^2 + p_2(x)a_2(x)^2 + p_3(x)a_3(x)^2$ for some polynomials $p_1(x), p_2(x), p_3(x)$ with integer coefficients.
2022 AIME Problems, 13
There is a polynomial $P(x)$ with integer coefficients such that $$P(x)=\frac{(x^{2310}-1)^6}{(x^{105}-1)(x^{70}-1)(x^{42}-1)(x^{30}-1)}$$ holds for every $0<x<1.$ Find the coefficient of $x^{2022}$ in $P(x)$
2009 Costa Rica - Final Round, 5
Suppose the polynomial $ x^{n} \plus{} a_{n \minus{} 1}x^{n \minus{} 1} \plus{} ... \plus{} a_{1} \plus{} a_{0}$ can be factorized as $ (x \plus{} r_{1})(x \plus{} r_{2})...(x \plus{} r_{n})$, with $ r_{1}, r_{2}, ..., r_{n}$ real numbers.
Show that $ (n \minus{} 1)a_{n \minus{} 1}^{2}\geq\ 2na_{n \minus{} 2}$
2022 Belarusian National Olympiad, 11.8
A polynomial $P(x,y)$ with integer coefficients satisfies two following conditions:
1. for every integer $a$ there exists exactly one integer $y$, such that $P(a,y)=0$
2. for every integer $b$ there exists exactly one integer $x$, such that $P(x,b)=0$
a) Prove that if the degree of $P$ is $2$, then it is divisible by either $x-y+C$ for some integer $C$, or $x+y+C$ for some integer $C$
b) Is there a polynomial $P$ that isn't divisible by any of $x-y+C$ or $x+y+C$ for integers $C$?
1977 IMO Longlists, 23
For which positive integers $n$ do there exist two polynomials $f$ and $g$ with integer coefficients of $n$ variables $x_1, x_2, \ldots , x_n$ such that the following equality is satisfied:
\[\sum_{i=1}^n x_i f(x_1, x_2, \ldots , x_n) = g(x_1^2, x_2^2, \ldots , x_n^2) \ ? \]
1997 IMO Shortlist, 10
Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k \plus{} 1\}$, then $ F(0) \equal{} F(1) \equal{} \ldots \equal{} F(k \plus{} 1)$.
2008 Harvard-MIT Mathematics Tournament, 7
A [i]root of unity[/i] is a complex number that is a solution to $ z^n \equal{} 1$ for some positive integer $ n$. Determine the number of roots of unity that are also roots of $ z^2 \plus{} az \plus{} b \equal{} 0$ for some integers $ a$ and $ b$.
1999 Mongolian Mathematical Olympiad, Problem 5
Find the number of polynomials $P(x)$ of degree $6$ whose coefficients are in the set $\{1,2,\ldots,1999\}$ and which are divisible by $x^3+x^2+x+1$.
2022 Belarus - Iran Friendly Competition, 2
Let $P(x)$ be a polynomial with rational coefficients such that $P(n)$ is integer for all
integers $n$. Moreover: $gcd(P(1), \ldots , P(k), \ldots) = 1$. Prove that every integer $k$ can be represented
in infinitely many ways of the form
$\pm P(1) \pm P(2) \pm \ldots \pm P(m)$,
for some positive integer $m$ and certain choices of $\pm$.
2017 South Africa National Olympiad, 6
Determine all pairs $(P, d)$ of a polynomial $P$ with integer coefficients and an integer $d$ such that the equation $P(x) - P(y) = d$ has infinitely many solutions in integers $x$ and $y$ with $x \neq y$.