This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1942 Putnam, A2

If a polynomial $f(x)$ is divided by $(x-a)^{2} (x-b)$, where $a\ne b$, derive a formula for the remainder.

2008 Mathcenter Contest, 5

Let $P_1(x)=\frac{1}{x}$ and $P_n(x)=P_{n-1}(x)+P_{n-1}(x-1)$ for every natural $ n$ greater than $1$. Find the value of $P_{2008}(2008)$. [i](Mathophile)[/i]

2014 China Girls Math Olympiad, 5

Let $a$ be a positive integer, but not a perfect square; $r$ is a real root of the equation $x^3-2ax+1=0$. Prove that $ r+\sqrt{a}$ is an irrational number.

2012 AMC 12/AHSME, 23

Consider all polynomials of a complex variable, $P(z)=4z^4+az^3+bz^2+cz+d$, where $a, b, c$ and $d$ are integers, $0 \le d \le c \le b \le a \le 4$, and the polynomial has a zero $z_0$ with $|z_0|=1$. What is the sum of all values $P(1)$ over all the polynomials with these properties? $ \textbf{(A)}\ 84\qquad\textbf{(B)}\ 92\qquad\textbf{(C)}\ 100\qquad\textbf{(D)}\ 108 \qquad\textbf{(E)}\ 120 $

2013 Iran MO (3rd Round), 1

Let $a_0,a_1,\dots,a_n \in \mathbb N$. Prove that there exist positive integers $b_0,b_1,\dots,b_n$ such that for $0 \leq i \leq n : a_i \leq b_i \leq 2a_i$ and polynomial \[P(x) = b_0 + b_1 x + \dots + b_n x^n\] is irreducible over $\mathbb Q[x]$. (10 points)

1986 IMO Longlists, 25

Let real numbers $x_1, x_2, \cdots , x_n$ satisfy $0 < x_1 < x_2 < \cdots< x_n < 1$ and set $x_0 = 0, x_{n+1} = 1$. Suppose that these numbers satisfy the following system of equations: \[\sum_{j=0, j \neq i}^{n+1} \frac{1}{x_i-x_j}=0 \quad \text{where } i = 1, 2, . . ., n.\] Prove that $x_{n+1-i} = 1- x_i$ for $i = 1, 2, . . . , n.$

2008 Iran MO (3rd Round), 5

Find all polynomials $ f\in\mathbb Z[x]$ such that for each $ a,b,x\in\mathbb N$ \[ a\plus{}b\plus{}c|f(a)\plus{}f(b)\plus{}f(c)\]

2010 Romania Team Selection Test, 3

Let $p$ be a prime number,let $n_1, n_2, \ldots, n_p$ be positive integer numbers, and let $d$ be the greatest common divisor of the numbers $n_1, n_2, \ldots, n_p$. Prove that the polynomial \[\dfrac{X^{n_1} + X^{n_2} + \cdots + X^{n_p} - p}{X^d - 1}\] is irreducible in $\mathbb{Q}[X]$. [i]Beniamin Bogosel[/i]

2001 Putnam, 3

For each integer $m$, consider the polynomial \[ P_m(x)=x^4-(2m+4)x^2+(m-2)^2. \] For what values of $m$ is $P_m(x)$ the product of two non-consant polynomials with integer coefficients?

1970 Dutch Mathematical Olympiad, 2

The equation $ x^3 - x^2 + ax - 2^n = 0$ has three integer roots. Determine $a$ and $n$.

2001 National Olympiad First Round, 16

The polynomial $P(x)=x^3+ax+1$ has exactly one solution on the interval $[-2,0)$ and has exactly one solution on the interval $(0,1]$ where $a$ is a real number. Which of the followings cannot be equal to $P(2)$? $ \textbf{(A)}\ \sqrt{17} \qquad\textbf{(B)}\ \sqrt[3]{30} \qquad\textbf{(C)}\ \sqrt{26}-1 \qquad\textbf{(D)}\ \sqrt {30} \qquad\textbf{(E)}\ \sqrt [3]{10} $

1992 Vietnam Team Selection Test, 2

Let a polynomial $f(x)$ be given with real coefficients and has degree greater or equal than 1. Show that for every real number $c > 0$, there exists a positive integer $n_0$ satisfying the following condition: if polynomial $P(x)$ of degree greater or equal than $n_0$ with real coefficients and has leading coefficient equal to 1 then the number of integers $x$ for which $|f(P(x))| \leq c$ is not greater than degree of $P(x)$.

1997 Dutch Mathematical Olympiad, 3

a. View the second-degree quadratic equation $x^2+? x +? = 0$ Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions. Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$). b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$ Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.

2014 Contests, 2

Given the polynomial $P(x)=(x^2-7x+6)^{2n}+13$ where $n$ is a positive integer. Prove that $P(x)$ can't be written as a product of $n+1$ non-constant polynomials with integer coefficients.

2009 Postal Coaching, 5

Find all real polynomials $P(x)$ such that for every four distinct natural numbers $a, b, c, d$ such that $a^2 + b^2 + c^2 = 2d^2$ with $gcd(a, b, c, d) = 1$ the following equality holds: $$2(P(d))^2 + 2P(ab + bc + ca) = (P(a + b + c))^2$$ .

2022 Singapore MO Open, Q5

Let $n\ge 2$ be a positive integer. For any integer $a$, let $P_a(x)$ denote the polynomial $x^n+ax$. Let $p$ be a prime number and define the set $S_a$ as the set of residues mod $p$ that $P_a(x)$ attains. That is, $$S_a=\{b\mid 0\le b\le p-1,\text{ and there is }c\text{ such that }P_a(c)\equiv b \pmod{p}\}.$$Show that the expression $\frac{1}{p-1}\sum\limits_{a=1}^{p-1}|S_a|$ is an integer. [i]Proposed by fattypiggy123[/i]

2019 India PRMO, 2

If $x=\sqrt2+\sqrt3+\sqrt6$ is a root of $x^4+ax^3+bx^2+cx+d=0$ where $a,b,c,d$ are integers, what is the value of $|a+b+c+d|$?

2007 Princeton University Math Competition, 9

Find all values of $a$ such that $x^6 - 6x^5 + 12x^4 + ax^3 + 12x^2 - 6x +1$ is nonnegative for all real $x$.

1968 Yugoslav Team Selection Test, Problem 4

If a polynomial of degree n has integer values when evaluated in each of $k,k+1,\ldots,k+n$, where $k$ is an integer, prove that the polynomial has integer values when evaluated at each integer $x$.

2009 China Team Selection Test, 2

Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.

2001 India IMO Training Camp, 2

Find all functions $f \colon \mathbb{R_{+}}\to \mathbb{R_{+}}$ satisfying : \[f ( f (x)-x) = 2x\] for all $x > 0$.

1973 USAMO, 4

Determine all roots, real or complex, of the system of simultaneous equations \begin{align*} x+y+z &= 3, \\ x^2+y^2+z^2 &= 3, \\ x^3+y^3+z^3 &= 3.\end{align*}

1947 Moscow Mathematical Olympiad, 128

Find the coefficient of $x^2$ after expansion and collecting the terms of the following expression (there are $k$ pairs of parentheses): $$((... (((x - 2)^2 - 2)^2 -2)^2 -... -2)^2 - 2)^2$$

1985 IberoAmerican, 1

Find all the triples of integers $ (a, b,c)$ such that: \[ \begin{array}{ccc}a\plus{}b\plus{}c &\equal{}& 24\\ a^{2}\plus{}b^{2}\plus{}c^{2}&\equal{}& 210\\ abc &\equal{}& 440\end{array}\]

2008 Federal Competition For Advanced Students, Part 2, 2

(a) Does there exist a polynomial $ P(x)$ with coefficients in integers, such that $ P(d) \equal{} \frac{2008}{d}$ holds for all positive divisors of $ 2008$? (b) For which positive integers $ n$ does a polynomial $ P(x)$ with coefficients in integers exists, such that $ P(d) \equal{} \frac{n}{d}$ holds for all positive divisors of $ n$?