This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1997 Vietnam Team Selection Test, 1

The function $ f : \mathbb{N} \to \mathbb{Z}$ is defined by $ f(0) \equal{} 2$, $ f(1) \equal{} 503$ and $ f(n \plus{} 2) \equal{} 503f(n \plus{} 1) \minus{} 1996f(n)$ for all $ n \in\mathbb{N}$. Let $ s_1$, $ s_2$, $ \ldots$, $ s_k$ be arbitrary integers not smaller than $ k$, and let $ p(s_i)$ be an arbitrary prime divisor of $ f\left(2^{s_i}\right)$, ($ i \equal{} 1, 2, \ldots, k$). Prove that, for any positive integer $ t$ ($ t\le k$), we have $ 2^t \Big | \sum_{i \equal{} 1}^kp(s_i)$ if and only if $ 2^t | k$.

1988 IMO Longlists, 93

Given a natural number $n,$ find all polynomials $P(x)$ of degree less than $n$ satisfying the following condition \[ \sum^n_{i=0} P(i) \cdot (-1)^i \cdot \binom{n}{i} = 0. \]

2016 District Olympiad, 3

[b]a)[/b] Prove that, for any integer $ k, $ the equation $ x^3-24x+k=0 $ has at most an integer solution. [b]b)[/b] Show that the equation $ x^3+24x-2016=0 $ has exactly one integer solution.

2002 Tournament Of Towns, 1

Show that if the last digit of the number $x^2+xy+y^2$ is $0$ (where $x,y\in\mathbb{N}$ ) then last two digits are zero.

2019 India IMO Training Camp, P1

Determine all non-constant monic polynomials $f(x)$ with integer coefficients for which there exists a natural number $M$ such that for all $n \geq M$, $f(n)$ divides $f(2^n) - 2^{f(n)}$ [i] Proposed by Anant Mudgal [/i]

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2004 Austria Beginners' Competition, 3

Determine the value of the parameter $m$ such that the equation $(m-2)x^2+(m^2-4m+3)x-(6m^2-2)=0$ has real solutions, and the sum of the third powers of these solutions is equal to zero.

2005 AIME Problems, 13

Let $P(x)$ be a polynomial with integer coefficients that satisfies $P(17)=10$ and $P(24)=17$. Given that $P(n)=n+3$ has two distinct integer solutions $n_1$ and $n_2$, find the product $n_1\cdot n_2$.

2014 Singapore Senior Math Olympiad, 13

Suppose $a$ and $b$ are real numbers such that the polynomial $x^3+ax^2+bx+15$ has a factor of $x^2-2$. Find the value of $a^2b^2$.

2006 China Western Mathematical Olympiad, 3

Let $k$ be a positive integer not less than 3 and $x$ a real number. Prove that if $\cos (k-1)x$ and $\cos kx$ are rational, then there exists a positive integer $n>k$, such that both $\cos (n-1)x$ and $\cos nx$ are rational.

2016 Israel National Olympiad, 5

The Fibonacci sequence $F_n$ is defined by $F_1=F_2=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for all integers $n\geq3$. Let $m,n\geq1$ be integers. Find the minimal degree $d$ for which there exists a polynomial $f(x)=a_dx^d+a_{d-1}x^{d-1}+\dots+a_1x+a_0$, which satisfies $f(k)=F_{m+k}$ for all $k=0,1,...,n$.

2005 IMC, 2

Let $f: \mathbb{R}\to\mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every integer $n\geq 2$. Is $f$ also a polynomial?

1978 Romania Team Selection Test, 3

Let $ P[X,Y] $ be a polynomial of degree at most $ 2 .$ If $ A,B,C,A',B',C' $ are distinct roots of $ P $ such that $ A,B,C $ are not collinear and $ A',B',C' $ lie on the lines $ BC,CA, $ respectively, $ AB, $ in the planar representation of these points, show that $ P=0. $

1994 Putnam, 4

Let $A$ and $B$ be $2\times 2$ matrices with integer entries such that $A, A+B, A+2B, A+3B,$ and $A+4B$ are all invertible matrices whose inverses have integer entries. Show that $A+5B$ is invertible and that its inverse has integer entries.

2019 Ecuador Juniors, 2

Find how many integer values $3\le n \le 99$ satisfy that the polynomial $x^2 + x + 1$ divides $x^{2^n} + x + 1$.

2015 Azerbaijan National Olympiad, 3

Find all polynomials $P(x)$ with real coefficents such that \[P(P(x))=(x^2+x+1)\cdot P(x)\] where $x \in \mathbb{R}$

2017 Azerbaijan EGMO TST, 3

The degree of the polynomial $P(x)$ is $2017.$ Prove that the number of distinct real roots of the equation $P(P(x)) = 0$ is not less than the number of distinct real roots of the equation $P(x) = 0.$

2009 IMC, 3

Let $A,B\in \mathcal{M}_n(\mathbb{C})$ be two $n \times n$ matrices such that \[ A^2B+BA^2=2ABA \] Prove there exists $k\in \mathbb{N}$ such that \[ (AB-BA)^k=\mathbf{0}_n\] Here $\mathbf{0}_n$ is the null matrix of order $n$.

1998 Brazil Team Selection Test, Problem 4

(a) Show that, for each positive integer $n$, the number of monic polynomials of degree $n$ with integer coefficients having all its roots on the unit circle is finite. (b) Let $P(x)$ be a monic polynomial with integer coefficients having all its roots on the unit circle. Show that there exists a positive integer $m$ such that $y^m=1$ for each root $y$ of $P(x)$.

2011 Vietnam National Olympiad, 3

Let $n\in\mathbb N$ and define $P(x,y)=x^n+xy+y^n.$ Show that we cannot obtain two non-constant polynomials $G(x,y)$ and $H(x,y)$ with real coefficients such that $P(x,y)=G(x,y)\cdot H(x,y).$

2013 All-Russian Olympiad, 2

Peter and Basil together thought of ten quadratic trinomials. Then, Basil began calling consecutive natural numbers starting with some natural number. After each called number, Peter chose one of the ten polynomials at random and plugged in the called number. The results were recorded on the board. They eventually form a sequence. After they finished, their sequence was arithmetic. What is the greatest number of numbers that Basil could have called out?

2022 VJIMC, 2

For any given pair of positive integers $m>n$ find all $a\in\mathbb R$ for which the polynomial $x^m-ax^n+1$ can be expressed as a quotient of two nonzero polynomials with real nonnegative coefficients.

2015 239 Open Mathematical Olympiad, 4

َA natural number $n$ is given. Let $f(x,y)$ be a polynomial of degree less than $n$ such that for any positive integers $x,y\leq n, x+y \leq n+1$ the equality $f(x,y)=\frac{x}{y}$ holds. Find $f(0,0)$.

2013 Bogdan Stan, 1

Under composition, let be a group of linear polynomials that admit a fixed point . Show that all polynomials of this group have the same fixed point. [i]Vasile Pop[/i]

2016 Saint Petersburg Mathematical Olympiad, 7

A polynomial $P(x)$ with integer coefficients and a positive integer $a>1$, are such that for all integers $x$, there exists an integer $z$ such that $aP(x)=P(z)$. Find all such pairs of $(P(x),a)$.