This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2014 IFYM, Sozopol, 3

Find the smallest number $n$ such that there exist polynomials $f_1, f_2, \ldots , f_n$ with rational coefficients satisfying \[x^2+7 = f_1\left(x\right)^2 + f_2\left(x\right)^2 + \ldots + f_n\left(x\right)^2.\] [i]Proposed by Mariusz Skałba, Poland[/i]

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2019 Durer Math Competition Finals, 12

$P$ and $Q$ are two different non-constant polynomials such that $P(Q(x)) = P(x)Q(x)$ and $P(1) = P(-1) = 2019$. What are the last four digits of $Q(P(-1))$?

1996 Bulgaria National Olympiad, 3

The quadratic polynomials $f$ and $g$ with real coefficients are such that if $g(x)$ is an integer for some $x>0$, then so is $f(x)$. Prove that there exist integers $m,n$ such that $f(x)=mg(x)+n$ for all $x$.

2008 ISI B.Math Entrance Exam, 5

If a polynomial $P$ with integer coefficients has three distinct integer zeroes , then show that $P(n)\neq 1$ for any integer $n$.

2004 Germany Team Selection Test, 1

Let n be a positive integer. Find all complex numbers $x_{1}$, $x_{2}$, ..., $x_{n}$ satisfying the following system of equations: $x_{1}+2x_{2}+...+nx_{n}=0$, $x_{1}^{2}+2x_{2}^{2}+...+nx_{n}^{2}=0$, ... $x_{1}^{n}+2x_{2}^{n}+...+nx_{n}^{n}=0$.

2018-IMOC, N6

If $f$ is a polynomial sends $\mathbb Z$ to $\mathbb Z$ and for $n\in\mathbb N_{\ge2}$, there exists $x\in\mathbb Z$ so that $n\nmid f(x)$, show that for every $k\in\mathbb Z$, there is a non-negative integer $t$ and $a_1,\ldots,a_t\in\{-1,1\}$ such that $$a_1f(1)+\ldots+a_tf(t)=k.$$

1996 All-Russian Olympiad, 4

Show that if the integers $a_1$; $\dots$ $a_m$ are nonzero and for each $k =0; 1; \dots ;n$ ($n < m - 1$), $a_1 + a_22^k + a_33^k + \dots + a_mm^k = 0$; then the sequence $a_1, \dots, a_m$ contains at least $n+1$ pairs of consecutive terms having opposite signs. [i]O. Musin[/i]

2008 AIME Problems, 9

Ten identical crates each of dimensions $ 3$ ft $ \times$ $ 4$ ft $ \times$ $ 6$ ft. The first crate is placed flat on the floor. Each of the remaining nine crates is placed, in turn, flat on top of the previous crate, and the orientation of each crate is chosen at random. Let $ \frac{m}{n}$ be the probability that the stack of crates is exactly $ 41$ ft tall, where $ m$ and $ n$ are relatively prime positive integers. Find $ m$.

2024 EGMO, 6

Find all positive integers $d$ for which there exists a degree $d$ polynomial $P$ with real coefficients such that there are at most $d$ different values among $P(0),P(1),P(2),\cdots,P(d^2-d)$ .

2016 Canada National Olympiad, 3

Find all polynomials $P(x)$ with integer coefficients such that $P(P(n) + n)$ is a prime number for infinitely many integers $n$.

2000 IMO Shortlist, 4

Find all triplets of positive integers $ (a,m,n)$ such that $ a^m \plus{} 1 \mid (a \plus{} 1)^n$.

2015 India IMO Training Camp, 2

Let $f$ and $g$ be two polynomials with integer coefficients such that the leading coefficients of both the polynomials are positive. Suppose $\deg(f)$ is odd and the sets $\{f(a)\mid a\in \mathbb{Z}\}$ and $\{g(a)\mid a\in \mathbb{Z}\}$ are the same. Prove that there exists an integer $k$ such that $g(x)=f(x+k)$.

1967 Putnam, A3

Consider polynomial functions $ax^2 -bx +c$ with integer coefficients which have two distinct zeros in the open interval $(0,1).$ Exhibit with proof the least positive integer value of $a$ for which such a polynomial exists.

2022 SG Originals, Q5

Let $n\ge 2$ be a positive integer. For any integer $a$, let $P_a(x)$ denote the polynomial $x^n+ax$. Let $p$ be a prime number and define the set $S_a$ as the set of residues mod $p$ that $P_a(x)$ attains. That is, $$S_a=\{b\mid 0\le b\le p-1,\text{ and there is }c\text{ such that }P_a(c)\equiv b \pmod{p}\}.$$Show that the expression $\frac{1}{p-1}\sum\limits_{a=1}^{p-1}|S_a|$ is an integer. [i]Proposed by fattypiggy123[/i]

2003 Federal Competition For Advanced Students, Part 1, 3

Given a positive real number $t$, find the number of real solutions $a, b, c, d$ of the system \[a(1 - b^2) = b(1 -c^2) = c(1 -d^2) = d(1 - a^2) = t.\]

2009 All-Russian Olympiad Regional Round, 11.1

Square trinomial $f(x)$ is such that the polynomial (f(x))^5 - f(x) has exactly three real roots. Find the ordinate of the vertex of the graph of this trinomial.

1995 Romania Team Selection Test, 3

Let $f$ be an irreducible (in $Z[x]$) monic polynomial with integer coefficients and of odd degree greater than $1$. Suppose that the modules of the roots of $f$ are greater than $1$ and that $f(0)$ is a square-free number. Prove that the polynomial $g(x) = f(x^3)$ is also irreducible

2017 CMI B.Sc. Entrance Exam, 3

Let $p(x)$ be a polynomial of degree strictly less than $100$ and such that it does not have $(x^3-x)$ as a factor. If $$\frac{d^{100}}{dx^{100}}\bigg(\frac{p(x)}{x^3-x}\bigg)=\frac{f(x)}{g(x)}$$ for some polynomials $f(x)$ and $g(x)$ then find the smallest possible degree of $f(x)$.

1992 IberoAmerican, 2

Given the positive real numbers $a_{1}<a_{2}<\cdots<a_{n}$, consider the function \[f(x)=\frac{a_{1}}{x+a_{1}}+\frac{a_{2}}{x+a_{2}}+\cdots+\frac{a_{n}}{x+a_{n}}\] Determine the sum of the lengths of the disjoint intervals formed by all the values of $x$ such that $f(x)>1$.

2020 German National Olympiad, 3

Show that the equation \[x(x+1)(x+2)\dots (x+2020)-1=0\] has exactly one positive solution $x_0$, and prove that this solution $x_0$ satisfies \[\frac{1}{2020!+10}<x_0<\frac{1}{2020!+6}.\]

2013 Stanford Mathematics Tournament, 3

Karl likes the number $17$ his favorite polynomials are monic quadratics with integer coefficients such that $17$ is a root of the quadratic and the roots differ by no more than $17$. Compute the sum of the coefficients of all of Karl's favorite polynomials. (A monic quadratic is a quadratic polynomial whose $x^2$ term has a coefficient of $1$.)

2014 Contests, 1

Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.

OMMC POTM, 2021 12

Let $r,s,t$ be the roots of $x^3+6x^2+7x+8$. Find $$(r^2+s+t)(s^2+t+r)(t^2+r+s).$$ [i]Proposed by Evan Chang (squareman), USA[/i]

1997 Romania National Olympiad, 3

Let $K$ be a finite field, $n \ge 2$ an integer, $f \in K[X]$ an irreducible polynomial of degree $n,$ and $g$ the product of all the nonconstant polynomials in $K[X]$ of degree at most $n-1.$ Prove that $f$ divides $g-1.$