This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 133

2012 BMT Spring, 2

Find the smallest number with exactly 28 divisors.

MathLinks Contest 7th, 3.2

Prove that for positive integers $ x,y,z$ the number $ x^2 \plus{} y^2 \plus{} z^2$ is not divisible by $ 3(xy \plus{} yz \plus{} zx)$.

PEN P Problems, 43

A positive integer $n$ is abundant if the sum of its proper divisors exceeds $n$. Show that every integer greater than $89 \times 315$ is the sum of two abundant numbers.

2020 Bundeswettbewerb Mathematik, 4

Define a sequence $(a_n)$ recursively by $a_1=0, a_2=2, a_3=3$ and $a_n=\max_{0<d<n} a_d \cdot a_{n-d}$ for $n \ge 4$. Determine the prime factorization of $a_{19702020}$.

2002 Cono Sur Olympiad, 6

Let $n$ a positive integer, $n > 1$. The number $n$ is wonderful if the number is divisible by sum of the your prime factors. For example; $90$ is wondeful, because $90 = 2 \times 3^2\times 5$ and $2 + 3 + 5 = 10, 10$ divides $90$. Show that, exist a number "wonderful" with at least $10^{2002}$ distinct prime numbers.

2014 Putnam, 1

Prove that every nonzero coefficient of the Taylor series of $(1-x+x^2)e^x$ about $x=0$ is a rational number whose numerator (in lowest terms) is either $1$ or a prime number.

2012 AMC 12/AHSME, 24

Define the function $f_1$ on the positive integers by setting $f_1(1)=1$ and if $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$ is the prime factorization of $n>1$, then \[f_1(n)=(p_1+1)^{e_1-1}(p_2+1)^{e_2-1}\cdots (p_k+1)^{e_k-1}.\] For every $m \ge 2$, let $f_m(n)=f_1(f_{m-1}(n))$. For how many $N$ in the range $1 \le N \le 400$ is the sequence $(f_1(N), f_2(N), f_3(N),...)$ unbounded? [b]Note:[/b] a sequence of positive numbers is unbounded if for every integer $B$, there is a member of the sequence greater than $B$. $ \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 16 \qquad\textbf{(C)}\ 17 \qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 19 $

2015 China Northern MO, 3

If $n=p_1^{a_1},p_2^{a_2}...p_s^{a_s}$ then $\phi (n)=n \left(1- \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)...\left(1- \frac{1}{p_s}\right)$. Find the smallest positive integer $n$ such that $\phi (n)=\frac{2^5}{47}n.$

1996 AMC 12/AHSME, 29

If $n$ is a positive integer such that $2n$ has $28$ positive divisors and $3n$ has $30$ positive divisors, then how many positive divisors does $6n$ have? $\text{(A)}\ 32 \qquad \text{(B)}\ 34 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 36\qquad \text{(E)}\ 38$

2018 PUMaC Number Theory B, 3

For a positive integer $n$, let $f(n)$ be the number of (not necessarily distinct) primes in the prime factorization of $k$. For example, $f(1) = 0, f(2) = 1, $ and $f(4) = f(6) = 2$. let $g(n)$ be the number of positive integers $k \leq n$ such that $f(k) \geq f(j)$ for all $j \leq n$. Find $g(1) + g(2) + \ldots + g(100)$.

2014 IMC, 4

Let $n>6$ be a perfect number, and let $n=p_1^{e_1}\cdot\cdot\cdot p_k^{e_k}$ be its prime factorisation with $1<p_1<\dots <p_k$. Prove that $e_1$ is an even number. A number $n$ is [i]perfect[/i] if $s(n)=2n$, where $s(n)$ is the sum of the divisors of $n$. (Proposed by Javier Rodrigo, Universidad Pontificia Comillas)

2013 Harvard-MIT Mathematics Tournament, 7

Find the number of positive divisors $d$ of $15!=15\cdot 14\cdot\cdots\cdot 2\cdot 1$ such that $\gcd(d,60)=5$.

1998 AMC 12/AHSME, 30

For each positive integer $n$, let \[a_n = \frac {(n + 9)!}{(n - 1)!}.\] Let $k$ denote the smallest positive integer for which the rightmost nonzero digit of $a_k$ is odd. The rightmost nonzero digit of $a_k$ is $ \textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 5\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 9$

1997 IMO Shortlist, 17

Find all pairs $ (a,b)$ of positive integers that satisfy the equation: $ a^{b^2} \equal{} b^a$.

2010 Contests, 2

Find all integers $n$, $n \ge 1$, such that $n \cdot 2^{n+1}+1$ is a perfect square.

2012 NIMO Problems, 7

For how many positive integers $n \le 500$ is $n!$ divisible by $2^{n-2}$? [i]Proposed by Eugene Chen[/i]

2004 China Team Selection Test, 1

Let $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (may not distinct) and $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (may not distinct) be two groups of positive integers such that for any positive integer $ d$ larger than $ 1$, the numbers of which can be divided by $ d$ in group $ m_1$, $ m_2$, $ \cdots$, $ m_r$ (including repeated numbers) are no less than that in group $ n_1$, $ n_2$ $ \cdots$, $ n_s$ (including repeated numbers). Prove that $ \displaystyle \frac{m_1 \cdot m_2 \cdots m_r}{n_1 \cdot n_2 \cdots n_s}$ is integer.

2023 India IMO Training Camp, 3

Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called [i]special[/i] if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$. (For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)

2013 Online Math Open Problems, 20

A positive integer $n$ is called [i]mythical[/i] if every divisor of $n$ is two less than a prime. Find the unique mythical number with the largest number of divisors. [i]Proposed by Evan Chen[/i]

2021 CIIM, 5

For every positive integer $n$, let $s(n)$ be the sum of the exponents of $71$ and $97$ in the prime factorization of $n$; for example, $s(2021) = s(43 \cdot 47) = 0$ and $s(488977) = s(71^2 \cdot 97) = 3$. If we define $f(n)=(-1)^{s(n)}$, prove that the limit \[ \lim_{n \to +\infty} \frac{f(1) + f(2) + \cdots+ f(n)}{n} \] exists and determine its value.

2005 Czech-Polish-Slovak Match, 6

Determine all pairs of integers $(x, y)$ satisfying the equation \[y(x + y) = x^3- 7x^2 + 11x - 3.\]

2024 Brazil National Olympiad, 1

Let \( a_1 \) be an integer greater than or equal to 2. Consider the sequence such that its first term is \( a_1 \), and for \( a_n \), the \( n \)-th term of the sequence, we have \[ a_{n+1} = \frac{a_n}{p_k^{e_k - 1}} + 1, \] where \( p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \) is the prime factorization of \( a_n \), with \( 1 < p_1 < p_2 < \cdots < p_k \), and \( e_1, e_2, \dots, e_k \) positive integers. For example, if \( a_1 = 2024 = 2^3 \cdot 11 \cdot 23 \), the next two terms of the sequence are \[ a_2 = \frac{a_1}{23^{1-1}} + 1 = \frac{2024}{1} + 1 = 2025 = 3^4 \cdot 5^2; \] \[ a_3 = \frac{a_2}{5^{2-1}} + 1 = \frac{2025}{5} + 1 = 406. \] Determine for which values of \( a_1 \) the sequence is eventually periodic and what all the possible periods are. [b]Note:[/b] Let \( p \) be a positive integer. A sequence \( x_1, x_2, \dots \) is eventually periodic with period \( p \) if \( p \) is the smallest positive integer such that there exists an \( N \geq 0 \) satisfying \( x_{n+p} = x_n \) for all \( n > N \).

2010 Math Prize For Girls Problems, 5

Find the smallest two-digit positive integer that is a divisor of 201020112012.

2014 Contests, 1

Prove that every nonzero coefficient of the Taylor series of $(1-x+x^2)e^x$ about $x=0$ is a rational number whose numerator (in lowest terms) is either $1$ or a prime number.