This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2018 USAMO, 5

In convex cyclic quadrilateral $ABCD$, we know that lines $AC$ and $BD$ intersect at $E$, lines $AB$ and $CD$ intersect at $F$, and lines $BC$ and $DA$ intersect at $G$. Suppose that the circumcircle of $\triangle ABE$ intersects line $CB$ at $B$ and $P$, and the circumcircle of $\triangle ADE$ intersects line $CD$ at $D$ and $Q$, where $C,B,P,G$ and $C,Q,D,F$ are collinear in that order. Prove that if lines $FP$ and $GQ$ intersect at $M$, then $\angle MAC = 90^\circ$. [i]Proposed by Kada Williams[/i]

2019 USA TSTST, 9

Let $ABC$ be a triangle with incenter $I$. Points $K$ and $L$ are chosen on segment $BC$ such that the incircles of $\triangle ABK$ and $\triangle ABL$ are tangent at $P$, and the incircles of $\triangle ACK$ and $\triangle ACL$ are tangent at $Q$. Prove that $IP=IQ$. [i]Ankan Bhattacharya[/i]