Found problems: 18
2014 Online Math Open Problems, 12
Let $a$, $b$, $c$ be positive real numbers for which \[
\frac{5}{a} = b+c, \quad
\frac{10}{b} = c+a, \quad \text{and} \quad
\frac{13}{c} = a+b. \] If $a+b+c = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $m+n$.
[i]Proposed by Evan Chen[/i]
2021 AMC 10 Spring, 18
A fair 6-sided die is repeatedly rolled until an odd number appears. What is the probability that every even number appears at least once before the first occurrence of an odd number?
$\textbf{(A)}\ \frac{1}{120} \qquad\textbf{(B)}\ \frac{1}{32} \qquad\textbf{(C)}\frac{1}{20} \qquad\textbf{(D)}\ \frac{3}{20} \qquad\textbf{(E)}\ \frac{1}{6}$
2018 AMC 12/AHSME, 17
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?
[asy]
draw((0,0)--(4,0)--(0,3)--(0,0));
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
label("$4$", (2,0), N);
label("$3$", (0,1.5), E);
label("$2$", (.8,1), E);
label("$S$", (0,0), NE);
draw((0.3,0.3)--(1.4,1.9), dashed);
[/asy]
$\textbf{(A) } \frac{25}{27} \qquad \textbf{(B) } \frac{26}{27} \qquad \textbf{(C) } \frac{73}{75} \qquad \textbf{(D) } \frac{145}{147} \qquad \textbf{(E) } \frac{74}{75} $
2021 AMC 12/AHSME Spring, 23
Frieda the frog begins a sequence of hops on a $3 \times 3$ grid of squares, moving one square on each hop and choosing at random the direction of each hop up, down, left, or right. She does not hop diagonally. When the direction of a hop would take Frieda off the grid, she "wraps around'' and jumps to the opposite edge. For example if Frieda begins in the center square and makes two hops "up'', the first hop would place her in the top row middle square, and the second hop would cause Frieda to jump to the opposite edge, landing in the bottom row middle square. Suppose Frieda starts from the center square, makes at most four hops at random, and stops hopping if she lands on a corner square. What is the probability that she reaches a corner square on one of the four hops?
$\textbf{(A) }\frac{9}{16}\qquad\textbf{(B) }\frac{5}{8}\qquad\textbf{(C) }\frac{3}{4}\qquad\textbf{(D) }\frac{25}{32}\qquad\textbf{(E) }\frac{13}{16}$
2021 AMC 10 Spring, 14
All the roots of polynomial $z^6 - 10z^5 + Az^4 + Bz^3 + Cz^2 + Dz + 16$ are positive integers. What is the value of $B$?
$\textbf{(A)}\ -88 \qquad\textbf{(B)}\ -80 \qquad\textbf{(C)}\ -64\qquad\textbf{(D)}\ -41 \qquad\textbf{(E)}\ -40$
2021 AMC 10 Spring, 23
Frieda the frog begins a sequence of hops on a $3 \times 3$ grid of squares, moving one square on each hop and choosing at random the direction of each hop up, down, left, or right. She does not hop diagonally. When the direction of a hop would take Frieda off the grid, she "wraps around'' and jumps to the opposite edge. For example if Frieda begins in the center square and makes two hops "up'', the first hop would place her in the top row middle square, and the second hop would cause Frieda to jump to the opposite edge, landing in the bottom row middle square. Suppose Frieda starts from the center square, makes at most four hops at random, and stops hopping if she lands on a corner square. What is the probability that she reaches a corner square on one of the four hops?
$\textbf{(A) }\frac{9}{16}\qquad\textbf{(B) }\frac{5}{8}\qquad\textbf{(C) }\frac{3}{4}\qquad\textbf{(D) }\frac{25}{32}\qquad\textbf{(E) }\frac{13}{16}$
2021 AMC 12/AHSME Spring, 12
All the roots of polynomial $z^6 - 10z^5 + Az^4 + Bz^3 + Cz^2 + Dz + 16$ are positive integers. What is the value of $B$?
$\textbf{(A)}\ -88 \qquad\textbf{(B)}\ -80 \qquad\textbf{(C)}\ -64\qquad\textbf{(D)}\ -41 \qquad\textbf{(E)}\ -40$
2021 AMC 10 Spring, 10
Which of the following is equivalent to $$(2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})(2^{64}+3^{64})?$$
$\textbf{(A) }3^{127}+2^{127} \qquad \textbf{(B) }3^{127}+2^{127}+2\cdot 3^{63}+3\cdot 2^{63} \qquad \textbf{(C) }3^{128}-2^{128} \qquad \textbf{(D) }3^{128}+2^{128} \qquad \textbf{(E) }5^{127}$
2021 AMC 10 Spring, 13
What is the volume of tetrahedron $ABCD$ with edge lengths $AB=2, AC=3, AD=4, BC=\sqrt{13}, BD=2\sqrt{5},$ and $CD=5$?
$\textbf{(A) }3 \qquad \textbf{(B) }2\sqrt{3} \qquad \textbf{(C) }4 \qquad \textbf{(D) }3\sqrt{3} \qquad \textbf{(E) }6$
2021 AMC 10 Spring, 18
Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b)=f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following numbers $x$ is $f(x)<0?$
$\textbf{(A) } \frac{17}{32} \qquad \textbf{(B) } \frac{11}{16} \qquad \textbf{(C) } \frac{7}{9} \qquad \textbf{(D) } \frac{7}{6} \qquad \textbf{(E) } \frac{25}{11}$
2021 AMC 12/AHSME Spring, 17
Trapezoid $ABCD$ has $\overline{AB} \parallel \overline{CD}$, $BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$, and let $P$ be the midpoint of $\overline{BD}$. GIven that $OP = 11$, the length $AD$ can be written in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m + n$?
$\textbf{(A)}\: 65\qquad\textbf{(B)}\: 132\qquad\textbf{(C)}\: 157\qquad\textbf{(D)}\: 194\qquad\textbf{(E)}\: 215$
2013 AMC 10, 24
Central High School is competing against Northern High School in a backgammon match. Each school has three players, and the contest rules require that each player play two games against each of the other's school's players. The match takes place in six rounds, with three games played simultaneously in each round. In how many different ways can the match be scheduled?
$\textbf{(A)} \ 540 \qquad \textbf{(B)} \ 600 \qquad \textbf{(C)} \ 720 \qquad \textbf{(D)} \ 810 \qquad \textbf{(E)} \ 900$
2021 AMC 10 Spring, 15
Values for $A,B,C,$ and $D$ are to be selected from $\{1, 2, 3, 4, 5, 6\}$ without replacement (i.e. no two letters have the same value). How many ways are there to make such choices so that the two curves $y=Ax^2+B$ and $y=Cx^2+D$ intersect? (The order in which the curves are listed does not matter; for example, the choices $A=3, B=2, C=4, D=1$ is considered the same as the choices $A=4, B=1, C=3, D=2.$)
$\textbf{(A) }30 \qquad \textbf{(B) }60 \qquad \textbf{(C) }90 \qquad \textbf{(D) }180 \qquad \textbf{(E) }360$
2018 AMC 10, 23
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?
[asy]
draw((0,0)--(4,0)--(0,3)--(0,0));
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
label("$4$", (2,0), N);
label("$3$", (0,1.5), E);
label("$2$", (.8,1), E);
label("$S$", (0,0), NE);
draw((0.3,0.3)--(1.4,1.9), dashed);
[/asy]
$\textbf{(A) } \frac{25}{27} \qquad \textbf{(B) } \frac{26}{27} \qquad \textbf{(C) } \frac{73}{75} \qquad \textbf{(D) } \frac{145}{147} \qquad \textbf{(E) } \frac{74}{75} $
2021 AMC 12/AHSME Spring, 18
Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b)=f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following numbers $x$ is $f(x)<0?$
$\textbf{(A) } \frac{17}{32} \qquad \textbf{(B) } \frac{11}{16} \qquad \textbf{(C) } \frac{7}{9} \qquad \textbf{(D) } \frac{7}{6} \qquad \textbf{(E) } \frac{25}{11}$
2021 AMC 10 Spring, 20
In how many ways can the sequence $1,2,3,4,5$ be arranged so that no three consecutive terms are increasing and no three consecutive terms are decreasing?
$\textbf{(A) } 10 \qquad \textbf{(B) } 18 \qquad \textbf{(C) } 24 \qquad \textbf{(D) } 32 \qquad \textbf{(E) } 44$
2021 AMC 12/AHSME Spring, 9
Which of the following is equivalent to $$(2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})(2^{64}+3^{64})?$$
$\textbf{(A) }3^{127}+2^{127} \qquad \textbf{(B) }3^{127}+2^{127}+2\cdot 3^{63}+3\cdot 2^{63} \qquad \textbf{(C) }3^{128}-2^{128} \qquad \textbf{(D) }3^{128}+2^{128} \qquad \textbf{(E) }5^{127}$
2021 AMC 10 Spring, 17
Trapezoid $ABCD$ has $\overline{AB} \parallel \overline{CD}$, $BC = CD = 43$, and $\overline{AD} \perp \overline{BD}$. Let $O$ be the intersection of the diagonals $\overline{AC}$ and $\overline{BD}$, and let $P$ be the midpoint of $\overline{BD}$. GIven that $OP = 11$, the length $AD$ can be written in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m + n$?
$\textbf{(A)}\: 65\qquad\textbf{(B)}\: 132\qquad\textbf{(C)}\: 157\qquad\textbf{(D)}\: 194\qquad\textbf{(E)}\: 215$