This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1111

2013 Stanford Mathematics Tournament, 20

Ben is throwing darts at a circular target with diameter 10. Ben never misses the target when he throws a dart, but he is equally likely to hit any point on the target. Ben gets $\lceil 5-x \rceil$ points for having the dart land $x$ units away from the center of the target. What is the expected number of points that Ben can earn from throwing a single dart? (Note that $\lceil y \rceil$ denotes the smallest integer greater than or equal to $y$.)

STEMS 2023 Math Cat A, 7

Suppose a biased coin gives head with probability $\dfrac{2}{3}$. The coin is tossed repeatedly, if it shows heads then player $A$ rolls a fair die, otherwise player $B$ rolls the same die. The process ends when one of the players get a $6$, and that player is declared the winner. If the probability that $A$ will win is given by $\dfrac{m}{n}$ where $m,n$ are coprime, then what is the value of $m^2n$?

1999 Gauss, 15

A box contains 36 pink, 18 blue, 9 green, 6 red, and 3 purple cubes that are identical in size. If a cube is selected at random, what is the probability that it is green? $\textbf{(A)}\ \dfrac{1}{9} \qquad \textbf{(B)}\ \dfrac{1}{8} \qquad \textbf{(C)}\ \dfrac{1}{5} \qquad \textbf{(D)}\ \dfrac{1}{4} \qquad \textbf{(E)}\ \dfrac{9}{70}$

2014 AIME Problems, 12

Let $A=\{1,2,3,4\}$, and $f$ and $g$ be randomly chosen (not necessarily distinct) functions from $A$ to $A$. The probability that the range of $f$ and the range of $g$ are disjoint is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.

2006 Stanford Mathematics Tournament, 2

Tags: probability
A customer enters a supermarket. The probability that the customer buys bread is .60, the probability that the customer buys milk is .50, and the probability that the customer buys both bread and milk is .30. What is the probability that the customer would buy either bread or milk or both?

2014 Math Prize For Girls Problems, 13

Tags: probability
Deepali has a bag containing 10 red marbles and 10 blue marbles (and nothing else). She removes a random marble from the bag. She keeps doing so until all of the marbles remaining in the bag have the same color. Compute the probability that Deepali ends with exactly 3 marbles remaining in the bag.

1979 USAMO, 3

Given three identical $n$- faced dice whose corresponding faces are identically numbered with arbitrary integers. Prove that if they are tossed at random, the probability that the sum of the bottom three face numbers is divisible by three is greater than or equal to $\frac{1}{4}$.

2004 Harvard-MIT Mathematics Tournament, 4

Tags: probability
Andrea flips a fair coin repeatedly, continuing until she either flips two heads in a row (the sequence $\texttt{HH}$) or flips tails followed by heads (the sequence $\texttt{TH}$). What is the probability that she will stop after flipping $\texttt{HH}$?

2008 AMC 8, 19

Tags: probability
Eight points are spaced around at intervals of one unit around a $2 \times 2$ square, as shown. Two of the $8$ points are chosen at random. What is the probability that the two points are one unit apart? [asy] size((50)); dot((5,0)); dot((5,5)); dot((0,5)); dot((-5,5)); dot((-5,0)); dot((-5,-5)); dot((0,-5)); dot((5,-5)); [/asy] $ \textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{2}{7}\qquad\textbf{(C)}\ \frac{4}{11}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{4}{7} $

1975 USAMO, 5

A deck of $ n$ playing cards, which contains three aces, is shuffled at random (it is assumed that all possible card distributions are equally likely). The cards are then turned up one by one from the top until the second ace appears. Prove that the expected (average) number of cards to be turned up is $ (n\plus{}1)/2$.

1983 IMO Longlists, 58

In a test, $3n$ students participate, who are located in three rows of $n$ students in each. The students leave the test room one by one. If $N_1(t), N_2(t), N_3(t)$ denote the numbers of students in the first, second, and third row respectively at time $t$, find the probability that for each t during the test, \[|N_i(t) - N_j(t)| < 2, i \neq j, i, j = 1, 2, \dots .\]

2016 AMC 10, 12

Tags: probability
Three distinct integers are selected at random between $1$ and $2016$, inclusive. Which of the following is a correct statement about the probability $p$ that the product of the three integers is odd? $\textbf{(A)}\ p<\dfrac{1}{8}\qquad\textbf{(B)}\ p=\dfrac{1}{8}\qquad\textbf{(C)}\ \dfrac{1}{8}<p<\dfrac{1}{3}\qquad\textbf{(D)}\ p=\dfrac{1}{3}\qquad\textbf{(E)}\ p>\dfrac{1}{3}$

1990 Flanders Math Olympiad, 3

We form a decimal code of $21$ digits. the code may start with $0$. Determine the probability that the fragment $0123456789$ appears in the code.

2009 AMC 12/AHSME, 23

A region $ S$ in the complex plane is defined by \[ S \equal{} \{x \plus{} iy: \minus{} 1\le x\le1, \minus{} 1\le y\le1\}.\] A complex number $ z \equal{} x \plus{} iy$ is chosen uniformly at random from $ S$. What is the probability that $ \left(\frac34 \plus{} \frac34i\right)z$ is also in $ S$? $ \textbf{(A)}\ \frac12\qquad \textbf{(B)}\ \frac23\qquad \textbf{(C)}\ \frac34\qquad \textbf{(D)}\ \frac79\qquad \textbf{(E)}\ \frac78$

2010 Princeton University Math Competition, 6

A regular pentagon is drawn in the plane, along with all its diagonals. All its sides and diagonals are extended infinitely in both directions, dividing the plane into regions, some of which are unbounded. An ant starts in the center of the pentagon, and every second, the ant randomly chooses one of the edges of the region it's in, with an equal probability of choosing each edge, and crosses that edge into another region. If the ant enters an unbounded region, it explodes. After first leaving the central region of the pentagon, let $x$ be the expected number of times the ant re-enters the central region before it explodes. Find the closest integer to $100x$.

2011 Pre-Preparation Course Examination, 1

suppose that $S_{\mathbb N}$ is the set of all permutations of natural numbers. finite permutations are a subset of $S_{\mathbb N}$ that behave like the identity permutation from somewhere. in other words bijective functions like $\pi: \mathbb N \longrightarrow \mathbb N$ that only for finite natural numbers $i$, $\pi(i)\neq i$. prove that we cannot put probability measure that is countably additive on $\wp(S_{\mathbb N})$ (family of all the subsets of $S_{\mathbb N}$) that is invarient under finite permutations.

2014 Contests, 2

An urn contains $4$ green balls and $6$ blue balls. A second urn contains $16$ green balls and $N$ blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is $0.58$. Find $N$.

2009 Math Prize For Girls Problems, 12

Jenny places 100 pennies on a table, 30 showing heads and 70 showing tails. She chooses 40 of the pennies at random (all different) and turns them over. That is, if a chosen penny was showing heads, she turns it to show tails; if a chosen penny was showing tails, she turns it to show heads. At the end, what is the expected number of pennies showing heads?

2023 AMC 10, 7

Tags: probability
Janet rolls a standard 6-sided die 4 times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal 3? $\textbf{(A) }\frac{2}{9}\qquad\textbf{(B) }\frac{49}{216}\qquad\textbf{(C) }\frac{25}{108}\qquad\textbf{(D) }\frac{17}{72}\qquad\textbf{(E) }\frac{13}{54}$

2008 Harvard-MIT Mathematics Tournament, 9

A Sudoku matrix is defined as a $ 9\times9$ array with entries from $ \{1, 2, \ldots , 9\}$ and with the constraint that each row, each column, and each of the nine $ 3 \times 3$ boxes that tile the array contains each digit from $ 1$ to $ 9$ exactly once. A Sudoku matrix is chosen at random (so that every Sudoku matrix has equal probability of being chosen). We know two of the squares in this matrix, as shown. What is the probability that the square marked by ? contains the digit $ 3$? $ \setlength{\unitlength}{6mm} \begin{picture}(9,9)(0,0) \multiput(0,0)(1,0){10}{\line(0,1){9}} \multiput(0,0)(0,1){10}{\line(1,0){9}} \linethickness{1.2pt} \multiput(0,0)(3,0){4}{\line(0,1){9}} \multiput(0,0)(0,3){4}{\line(1,0){9}} \put(0,8){\makebox(1,1){1}} \put(1,7){\makebox(1,1){2}} \put(3,6){\makebox(1,1){?}} \end{picture}$

1984 AIME Problems, 11

A gardener plants three maple trees, four oak trees, and five birch trees in a row. He plants them in random order, each arrangement being equally likely. Let $\frac{m}{n}$ in lowest terms be the probability that no two birch trees are next to one another. Find $m + n$.

2020 Purple Comet Problems, 17

The following diagram shows four vertices connected by six edges. Suppose that each of the edges is randomly painted either red, white, or blue. The probability that the three edges adjacent to at least one vertex are colored with all three colors is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/6/4/de0a2a1a659011a30de1859052284c696822bb.png[/img]

1993 Greece National Olympiad, 11

Alfred and Bonnie play a game in which they take turns tossing a fair coin. The winner of a game is the first person to obtain a head. Alfred and Bonnie play this game several times with the stipulation that the loser of a game goes first in the next game. Suppose that Alfred goes first in the first game, and that the probability that he wins the sixth game is $m/n$, where $m$ and $n$ are relatively prime positive integers. What are the last three digits of $m + n$?

1986 IMO Longlists, 27

In an urn there are n balls numbered $1, 2, \cdots, n$. They are drawn at random one by one without replacement and the numbers are recorded. What is the probability that the resulting random permutation has only one local maximum? A term in a sequence is a local maximum if it is greater than all its neighbors.

1984 Polish MO Finals, 4

A coin is tossed $n$ times, and the outcome is written in the form ($a_1,a_2,...,a_n$), where $a_i = 1$ or $2$ depending on whether the result of the $i$-th toss is the head or the tail, respectively. Set $b_j = a_1 +a_2 +...+a_j$ for $j = 1,2,...,n$, and let $p(n)$ be the probability that the sequence $b_1,b_2,...,b_n$ contains the number $n$. Express $p(n)$ in terms of $p(n-1)$ and $p(n-2)$.