Found problems: 1111
2002 IMC, 8
200 students participated in a math contest. They had 6 problems to solve. Each problem was correctly solved by at least 120 participants. Prove that there must be 2 participants such that every problem was solved by at least one of these two students.
2007 Putnam, 3
Let $ k$ be a positive integer. Suppose that the integers $ 1,2,3,\dots,3k \plus{} 1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by $ 3$ ? Your answer should be in closed form, but may include factorials.
2010 Indonesia TST, 4
Given $3n$ cards, each of them will be written with a number from the following sequence:
$$2, 3, ..., n, n + 1, n + 3, n + 4, ..., 2n + 1, 2n + 2, 2n + 4, ..., 3n + 3$$
with each number used exactly once. Then every card is arranged from left to right in random order. Determine the probability such that for every $i$ with $1\le i \le 3n$, the number written on the $i$-th card, counted from the left, is greater than or equal to $i$.
2015 AMC 12/AHSME, 24
Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\tfrac nd$ where $n$ and $d$ are integers with $1\leq d\leq 5$. What is the probability that \[(\cos(a\pi)+i\sin(b\pi))^4\] is a real number?
$\textbf{(A) }\dfrac3{50}\qquad\textbf{(B) }\dfrac4{25}\qquad\textbf{(C) }\dfrac{41}{200}\qquad\textbf{(D) }\dfrac6{25}\qquad\textbf{(E) }\dfrac{13}{50}$
2007 India IMO Training Camp, 2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$.
[i]Alternative formulation[/i]:
Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$
[i]Proposed by Federico Ardila, Colombia[/i]
2015 AMC 12/AHSME, 17
Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?
$\textbf{(A) }\dfrac{47}{256}\qquad\textbf{(B) }\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$
STEMS 2022 Math Cat A Qualifier Round, 1
We have $2022$ $1s$ written on a board in a line. We randomly choose a strictly increasing sequence from ${1, 2, . . . , 2022}$ such that the last term is $2022$. If the chosen sequence is $a_1, a_2, ..., a_k$ ($k$ is not fixed), then at the $i^{th}$ step, we choose the first a$_i$ numbers on the line and change the 1s to 0s and 0s to 1s. After $k$ steps are over, we calculate the sum of the numbers on the board, say $S$. The expected value of $S$ is $\frac{a}{b}$ where $a, b$ are relatively prime positive integers. Find $a + b.$
2021 JHMT HS, 7
At a prom, there are $4$ boys and $3$ girls. Each boy picks a girl to dance with, and each girl picks a boy to dance with. Assuming that each choice is uniformly random, the probability that at least one boy and one girl choose each other as dance partners is $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Compute $p+q.$
2007 Stanford Mathematics Tournament, 6
Team Stanford has a $ \frac{1}{3}$ chance of winning any given math contest. If Stanford competes in 4 contests this quarter, what is the probability that the team will win at least once?
1983 AIME Problems, 13
For $\{1, 2, 3, \dots, n\}$ and each of its nonempty subsets a unique [b]alternating sum[/b] is defined as follows: Arrange the numbers in the subset in decreasing order and then, beginning with the largest, alternately add and subtract successive numbers. (For example, the alternating sum for $\{1, 2, 4, 6, 9\}$ is $9 - 6 + 4 - 2 + 1 = 6$ and for $\{5\}$ it is simply 5.) Find the sum of all such alternating sums for $n = 7$.
2018 AMC 8, 11
Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown.
\begin{eqnarray*}
\text{X}&\quad\text{X}\quad&\text{X} \\
\text{X}&\quad\text{X}\quad&\text{X}
\end{eqnarray*}
If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column?
$\textbf{(A) } \frac{1}{3} \qquad \textbf{(B) } \frac{2}{5} \qquad \textbf{(C) } \frac{7}{15} \qquad \textbf{(D) } \frac{1}{2} \qquad \textbf{(E) } \frac{2}{3}$
1989 Polish MO Finals, 1
$n, k$ are positive integers. $A_0$ is the set $\{1, 2, ... , n\}$. $A_i$ is a randomly chosen subset of $A_{i-1}$ (with each subset having equal probability). Show that the expected number of elements of $A_k$ is $\dfrac{n}{2^k}$
2009 Harvard-MIT Mathematics Tournament, 7
Paul fills in a $7\times7$ grid with the numbers $1$ through $49$ in a random arrangement. He then erases his work and does the same thing again, to obtain two different random arrangements of the numbers in the grid. What is the expected number of pairs of numbers that occur in either the same row as each other or the same column as each other in both of the two arrangements?
2018 BMT Spring, 10
Consider a $2 \times n$ grid where each cell is either black or white, which we attempt to tile with $2 \times 1$ black or white tiles such that tiles have to match the colors of the cells they cover. We first randomly select a random positive integer $N$ where $N$ takes the value $n$ with probability $\frac{1}{2^n}$. We then take a $2 \times N$ grid and randomly color each cell black or white independently with equal probability. Compute the probability the resulting grid has a valid tiling.
2017 AMC 12/AHSME, 25
The vertices $V$ of a centrally symmetric hexagon in the complex plane are given by
$$V=\left\{ \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(-1+i),\frac{1}{\sqrt{8}}(1-i),\frac{1}{\sqrt{8}}(-1-i) \right\}.$$
For each $j$, $1\leq j\leq 12$, an element $z_j$ is chosen from $V$ at random, independently of the other choices. Let $P={\prod}_{j=1}^{12}z_j$ be the product of the $12$ numbers selected. What is the probability that $P=-1$?
$\textbf{(A) } \dfrac{5\cdot11}{3^{10}} \qquad \textbf{(B) } \dfrac{5^2\cdot11}{2\cdot3^{10}} \qquad \textbf{(C) } \dfrac{5\cdot11}{3^{9}} \qquad \textbf{(D) } \dfrac{5\cdot7\cdot11}{2\cdot3^{10}} \qquad \textbf{(E) } \dfrac{2^2\cdot5\cdot11}{3^{10}}$
2011 Math Prize For Girls Problems, 15
The game of backgammon has a "doubling" cube, which is like a standard 6-faced die except that its faces are inscribed with the numbers 2, 4, 8, 16, 32, and 64, respectively. After rolling the doubling cube four times at random, we let $a$ be the value of the first roll, $b$ be the value of the second roll, $c$ be the value of the third roll, and $d$ be the value of the fourth roll. What is the probability that $\frac{a + b}{c + d}$ is the average of $\frac{a}{c}$ and $\frac{b}{d}$ ?
2007 Putnam, 6
A [i]triangulation[/i] $ \mathcal{T}$ of a polygon $ P$ is a finite collection of triangles whose union is $ P,$ and such that the intersection of any two triangles is either empty, or a shared vertex, or a shared side. Moreover, each side of $ P$ is a side of exactly one triangle in $ \mathcal{T}.$ Say that $ \mathcal{T}$ is [i]admissible[/i] if every internal vertex is shared by $ 6$ or more triangles. For example
[asy]
size(100);
dot(dir(-100)^^dir(230)^^dir(160)^^dir(100)^^dir(50)^^dir(5)^^dir(-55));
draw(dir(-100)--dir(230)--dir(160)--dir(100)--dir(50)--dir(5)--dir(-55)--cycle);
pair A = (0,-0.25);
dot(A);
draw(A--dir(-100)^^A--dir(230)^^A--dir(160)^^A--dir(100)^^A--dir(5)^^A--dir(-55)^^dir(5)--dir(100));
[/asy]
Prove that there is an integer $ M_n,$ depending only on $ n,$ such that any admissible triangulation of a polygon $ P$ with $ n$ sides has at most $ M_n$ triangles.
2012 Math Prize For Girls Problems, 18
Sherry starts at the number 1. Whenever she's at 1, she moves one step up (to 2). Whenever she's at a number strictly between 1 and 10, she moves one step up or one step down, each with probability $\frac{1}{2}$. When she reaches 10, she stops. What is the expected number (average number) of steps that Sherry will take?
2021 Miklós Schweitzer, 9
For a given natural number $n$, two players randomly (uniformly distributed) select a common number $0 \le j \le n$, and then each of them independently randomly selects a subset of $\{1,2, \cdots, n \}$ with $j$ elements. Let $p_n$ be the probability that the same set was chosen. Prove that
\[ \sum_{k=1}^{n} p_k = 2 \log{n} + 2 \gamma - 1 + o(1), \quad (n \to \infty),\]
where $\gamma$ is the Euler constant.
2006 China Second Round Olympiad, 12
Suppose there are 8 white balls and 2 red balls in a packet. Each time one ball is drawn and replaced by a white one. Find the probability that the last red ball is drawn in the fourth draw.
1952 Miklós Schweitzer, 6
Let $ 2n$ distinct points on a circle be given. Arrange them into disjoint pairs in an arbitrary way and join the couples by chords. Determine the probability that no two of these $ n$ chords intersect. (All possible arrangement into pairs are supposed to have the same probability.)
2006 AMC 12/AHSME, 17
For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5 and 6 on each die are in the ratio $ 1: 2: 3: 4: 5: 6$. What is the probability of rolling a total of 7 on the two dice?
$ \textbf{(A) } \frac 4{63} \qquad \textbf{(B) } \frac 18 \qquad \textbf{(C) } \frac 8{63} \qquad \textbf{(D) } \frac 16 \qquad \textbf{(E) } \frac 27$
2011 Baltic Way, 6
Let $n$ be a positive integer. Prove that the number of lines which go through the origin and precisely one other point with integer coordinates $(x,y),0\le x,y\le n$, is at least $\frac{n^2}{4}$.
2020 LIMIT Category 2, 8
Let $S$ be a finite set of size $s\geq 1$ defined with a uniform probability $\mathbb{P}$( i.e. for any subset $X\subset S$ of size $x$, $\mathbb{P}(x)=\frac{x}{s}$). Suppose $A$ and $B$ are subsets of $S$. They are said to be independent iff $\mathbb{P}(A)\mathbb{P}(B)=\mathbb{P}(A\cap B)$. Which if these is sufficient for independence?
(A)$|A\cup B|=|A|+|B|$
(B)$|A\cap B|=|A|+|B|$
(C)$|A\cup B|=|A|\cdot |B|$
(D)$|A\cap B|=|A|\cdot |B|$
2016 Fall CHMMC, 3
A gambler offers you a $2$ dollar ticket to play the following game: First, you pick a real number $0 \leq p \leq 1$, then you are given a weighted coin that comes up heads with probability $p$. If you receive $1$ dollar the [i]first[/i] time you flip a tail, and if you receive $2$ dollars [i]first[/i] time you flip a head, what is the optimal expected net winning of flipping the coin twice?