This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 61

PEN F Problems, 12

Does there exist a circle and an infinite set of points on it such that the distance between any two points of the set is rational?

Russian TST 2016, P3

Prove that any rational number can be represented as a product of four rational numbers whose sum is zero.

PEN F Problems, 7

If $x$ is a positive rational number, show that $x$ can be uniquely expressed in the form \[x=a_{1}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots,\] where $a_{1}a_{2},\cdots$ are integers, $0 \le a_{n}\le n-1$ for $n>1$, and the series terminates. Show also that $x$ can be expressed as the sum of reciprocals of different integers, each of which is greater than $10^{6}$.

2016 Poland - Second Round, 1

Point $P$ lies inside triangle of sides of length $3, 4, 5$. Show that if distances between $P$ and vertices of triangle are rational numbers then distances from $P$ to sides of triangle are rational numbers too.

2020 Bundeswettbewerb Mathematik, 2

Prove that there are no rational numbers $x,y,z$ with $x+y+z=0$ and $x^2+y^2+z^2=100$.

KoMaL A Problems 2021/2022, A. 822

Is it possible to find $p,q,r\in\mathbb Q$ such that $p+q+r=0$ and $pqr=1$? [i]Proposed by Máté Weisz, Cambridge[/i]

1967 IMO Shortlist, 2

If $x$ is a positive rational number show that $x$ can be uniquely expressed in the form $x = \sum^n_{k=1} \frac{a_k}{k!}$ where $a_1, a_2, \ldots$ are integers, $0 \leq a_n \leq n - 1$, for $n > 1,$ and the series terminates. Show that $x$ can be expressed as the sum of reciprocals of different integers, each of which is greater than $10^6.$

PEN F Problems, 9

Prove that every positive rational number can be represented in the form \[\frac{a^{3}+b^{3}}{c^{3}+d^{3}}\] for some positive integers $a, b, c$, and $d$.

2012 Polish MO Finals, 1

Decide, whether exists positive rational number $w$, which isn't integer, such that $w^w$ is a rational number.

2019 Switzerland Team Selection Test, 3

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

1990 IMO Longlists, 1

Prove that on the coordinate plane it is impossible to draw a closed broken line such that [i](i)[/i] the coordinates of each vertex are rational; [i](ii)[/i] the length each of its edges is 1; [i](iii)[/i] the line has an odd number of vertices.

PEN F Problems, 15

Find all rational numbers $k$ such that $0 \le k \le \frac{1}{2}$ and $\cos k \pi$ is rational.

1991 IMO Shortlist, 19

Let $ \alpha$ be a rational number with $ 0 < \alpha < 1$ and $ \cos (3 \pi \alpha) \plus{} 2\cos(2 \pi \alpha) \equal{} 0$. Prove that $ \alpha \equal{} \frac {2}{3}$.

2019 India IMO Training Camp, P1

Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.

2023 Romanian Master of Mathematics Shortlist, A1

Determine all polynomials $P$ with real coefficients satisfying the following condition: whenever $x$ and $y$ are real numbers such that $P(x)$ and $P(y)$ are both rational, so is $P(x + y)$.

2000 Poland - Second Round, 1

Decide, whether every positive rational number can present in the form $\frac{a^2 + b^3}{c^5 + d^7}$, where $a, b, c, d$ are positive integers.

1973 Putnam, B2

Let $z=x+yi$ be a complex number with $x$ and $y$ rational and with $|z|=1.$ Prove that the number $|z^{2n} -1|$ is rational for every integer $n$.

PEN F Problems, 10

The set $ S$ is a finite subset of $ [0,1]$ with the following property: for all $ s\in S$, there exist $ a,b\in S\cup\{0,1\}$ with $ a, b\neq s$ such that $ s \equal{}\frac{a\plus{}b}{2}$. Prove that all the numbers in $ S$ are rational.

2013 Poland - Second Round, 5

Let $W(x)$ be a polynomial of integer coefficients such that for any pair of different rational number $r_1$, $r_2$ dependence $W(r_1) \neq W(r_2)$ is true. Decide, whether the assuptions imply that for any pair of different real numbers $t_1$, $t_2$ dependence $W(t_1) \neq W(t_2)$ is true.

PEN F Problems, 11

Let $S=\{x_0, x_1, \cdots, x_n\} \subset [0,1]$ be a finite set of real numbers with $x_{0}=0$ and $x_{1}=1$, such that every distance between pairs of elements occurs at least twice, except for the distance $1$. Prove that all of the $x_i$ are rational.

1986 IMO Shortlist, 2

Let $f(x) = x^n$ where $n$ is a fixed positive integer and $x =1, 2, \cdots .$ Is the decimal expansion $a = 0.f (1)f(2)f(3) . . .$ rational for any value of $n$ ? The decimal expansion of a is defined as follows: If $f(x) = d_1(x)d_2(x) \cdots d_{r(x)}(x)$ is the decimal expansion of $f(x)$, then $a = 0.1d_1(2)d_2(2) \cdots d_{r(2)}(2)d_1(3) . . . d_{r(3)}(3)d_1(4) \cdots .$

1967 IMO Longlists, 14

Which fractions $ \dfrac{p}{q},$ where $p,q$ are positive integers $< 100$, is closest to $\sqrt{2} ?$ Find all digits after the point in decimal representation of that fraction which coincide with digits in decimal representation of $\sqrt{2}$ (without using any table).

2001 Moldova National Olympiad, Problem 5

Let $a,b,c,d$ be real numbers. Prove that the set $M=\left\{ax^3+bx^2+cx+d|x\in\mathbb R\right\}$ contains no irrational numbers if and only if $a=b=c=0$ and $d$ is rational.

PEN F Problems, 13

Prove that numbers of the form \[\frac{a_{1}}{1!}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots,\] where $0 \le a_{i}\le i-1 \;(i=2, 3, 4, \cdots)$ are rational if and only if starting from some $i$ on all the $a_{i}$'s are either equal to $0$ ( in which case the sum is finite) or all are equal to $i-1$.