This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2019 Federal Competition For Advanced Students, P1, 1

We consider the two sequences $(a_n)_{n\ge 0}$ and $(b_n) _{n\ge 0}$ of integers, which are given by $a_0 = b_0 = 2$ and $a_1= b_1 = 14$ and for $n\ge 2$ they are defined as $a_n = 14a_{n-1} + a_{n-2}$ , $b_n = 6b_{n-1}-b_{n-2}$. Determine whether there are infinite numbers that occur in both sequences

VMEO IV 2015, 10.1

Where $n$ is a positive integer, the sequence $a_n$ is determined by the formula $$a_{n+1}=\frac{1}{a_1 + a_2 +... + a_n} -\sqrt2, \,a_1 = 1.$$ Find the limit of the sequence $S_n$ defined by $S_n=a_1 + a_2 +... + a_n$.

2025 NEPALTST, 1

Let the sequence $\{a_n\}_{n \geq 1}$ be defined by \[ a_1 = 1, \quad a_{n+1} = a_n + \frac{1}{\sqrt[2024]{a_n}} \quad \text{for } n \geq 1, \, n \in \mathbb{N} \] Prove that \[ a_n^{2025} >n^{2024} \] for all positive integers $n \geq 2$. $\textbf{Proposed by Prajit Adhikari, Nepal.}$

1973 Spain Mathematical Olympiad, 3

The sequence $(a_n)$ of complex numbers is considered in the complex plane, in which is: $$a_0 = 1, \,\,\, a_n = a_{n-1} +\frac{1}{n}(\cos 45^o + i \sin 45^o )^n.$$ Prove that the sequence of the real parts of the terms of $(a_n)$ is convergent and its limit is a number between $0.85$ and $1.15$.

2006 Cuba MO, 7

The sequence $a_1, a_2, a_3, ...$ satisfies that $a_1 = 3$, $a_2 = -1$, $a_na_{n-2} +a_{n-1} = 2$ for all $n \ge 3$. Calculate $a_1 + a_2+ ... + a_{99}$.

2016 Puerto Rico Team Selection Test, 6

$N$ denotes the set of all natural numbers. Define a function $T: N \to N$ such that $T (2k) = k$ and $T (2k + 1) = 2k + 2$. We write $T^2 (n) = T (T (n))$ and in general $T^k (n) = T^{k-1} (T (n))$ for all $k> 1$. (a) Prove that for every $n \in N$, there exists $k$ such that $T^k (n) = 1$. (b) For $k \in N$, $c_k$ denotes the number of elements in the set $\{n: T^k (n) = 1\}$. Prove that $c_{k + 2} = c_{k + 1} + c_k$, for $1 \le k$.

2009 Math Prize For Girls Problems, 10

When the integer $ {\left(\sqrt{3} \plus{} 5\right)}^{103} \minus{} {\left(\sqrt{3} \minus{} 5\right)}^{103}$ is divided by 9, what is the remainder?

2015 Korea - Final Round, 5

For a fixed positive integer $k$, there are two sequences $A_n$ and $B_n$. They are defined inductively, by the following recurrences. $A_1 = k$, $A_2 = k$, $A_{n+2} = A_{n}A_{n+1}$ $B_1 = 1$, $B_2 = k$, $B_{n+2} = \frac{B^3_{n+1}+1}{B_{n}}$ Prove that for all positive integers $n$, $A_{2n}B_{n+3}$ is an integer.

2003 Miklós Schweitzer, 6

Show that the recursion $n=x_n(x_{n-1}+x_n+x_{n+1})$, $n=1,2,\ldots$, $x_0=0$ has exaclty one nonnegative solution. (translated by L. Erdős)

2025 India National Olympiad, P1

Consider the sequence defined by \(a_1 = 2\), \(a_2 = 3\), and \[ a_{2k+1} = 2 + 2a_k, \quad a_{2k+2} = 2 + a_k + a_{k+1}, \] for all integers \(k \geq 1\). Determine all positive integers \(n\) such that \[ \frac{a_n}{n} \] is an integer. Proposed by Niranjan Balachandran, SS Krishnan, and Prithwijit De.

2025 VJIMC, 1

Let $x_0=a, x_1= b, x_2 = c$ be given real numbers and let $x_{n+2} = \frac{x_n + x_{n-1}}{2}$ for all $n\geq 1$. Show that the sequence $(x_n)_{n\geq 0}$ converges and find its limit.

OIFMAT III 2013, 10

Prove that the sequence defined by: $$ y_ {n + 1} = \frac {1} {2} (3y_ {n} + \sqrt {5y_ {n} ^ {2} -4}) , \,\, \forall n \ge 0$$ with $ y_ {0} = 1$ consists only of integers.

2015 Romania Team Selection Tests, 2

Let $(a_n)_{n \geq 0}$ and $(b_n)_{n \geq 0}$ be sequences of real numbers such that $ a_0>\frac{1}{2}$ , $a_{n+1} \geq a_n$ and $b_{n+1}=a_n(b_n+b_{n+2})$ for all non-negative integers $n$ . Show that the sequence $(b_n)_{n \geq 0}$ is bounded .

2015 Postal Coaching, 4

The sequence $<a_n>$ is defined as follows, $a_1=a_2=1$, $a_3=2$, $$a_{n+3}=\frac{a_{n+2}a_{n+1}+n!}{a_n},$$ $n \ge 1$. Prove that all the terms in the sequence are integers.

2024 Bulgarian Winter Tournament, 9.4

There are $11$ points equally spaced on a circle. Some of the segments having endpoints among these vertices are drawn and colored in two colors, so that each segment meets at an internal for it point at most one other segment from the same color. What is the greatest number of segments that could be drawn?

2018 Hanoi Open Mathematics Competitions, 7

Let $\{u_n\}_ {n\ge 1}$ be given sequence satisfying the conditions: $u_1 = 0$, $u_2 = 1$, $u_{n+1} = u_{n-1} + 2n - 1$ for $n \ge 2$. 1) Calculate $u_5$. 2) Calculate $u_{100} + u_{101}$.

1999 IMO Shortlist, 3

A biologist watches a chameleon. The chameleon catches flies and rests after each catch. The biologist notices that: [list=1][*]the first fly is caught after a resting period of one minute; [*]the resting period before catching the $2m^\text{th}$ fly is the same as the resting period before catching the $m^\text{th}$ fly and one minute shorter than the resting period before catching the $(2m+1)^\text{th}$ fly; [*]when the chameleon stops resting, he catches a fly instantly.[/list] [list=a][*]How many flies were caught by the chameleon before his first resting period of $9$ minutes in a row? [*]After how many minutes will the chameleon catch his $98^\text{th}$ fly? [*]How many flies were caught by the chameleon after 1999 minutes have passed?[/list]

1981 IMO Shortlist, 9

A sequence $(a_n)$ is defined by means of the recursion \[a_1 = 1, a_{n+1} = \frac{1 + 4a_n +\sqrt{1+ 24a_n}}{16}.\] Find an explicit formula for $a_n.$

2017 Ecuador NMO (OMEC), 5

Let the sequences $(x_n)$ and $(y_n)$ be defined by $x_0 = 0$, $x_1 = 1$, $x_{n + 2} = 3x_{n + 1}-2x_n$ for $n = 0, 1, ...$ and $y_n = x^2_n+2^{n + 2}$ for $n = 0, 1, ...,$ respectively. Show that for all n> 0, and n is the square of a odd integer.

2019 India PRMO, 3

Let $x_{1}$ be a positive real number and for every integer $n \geq 1$ let $x_{n+1} = 1 + x_{1}x_{2}\ldots x_{n-1}x_{n}$. If $x_{5} = 43$, what is the sum of digits of the largest prime factors of $x_{6}$?

2013 Iran MO (2nd Round), 3

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers for which \[ a_{n+2} = \left[\frac{2a_n}{a_{n+1}}\right]+\left[\frac{2a_{n+1}}{a_n}\right]. \] Prove that there exists a positive integer $m$ such that $a_m=4$ and $a_{m+1} \in\{3,4\}$. [b]Note.[/b] $[x]$ is the greatest integer not exceeding $x$.

V Soros Olympiad 1998 - 99 (Russia), 11.9

The sequence of $a_n$ is determined by the relation $$a_{n+1}=\frac{k+a_n}{1-a_n}$$ where $k > 0$. It is known that $a_{13} = a_1$. What values can $k$ take?

2003 IMO Shortlist, 7

The sequence $a_0$, $a_1$, $a_2,$ $\ldots$ is defined as follows: \[a_0=2, \qquad a_{k+1}=2a_k^2-1 \quad\text{for }k \geq 0.\] Prove that if an odd prime $p$ divides $a_n$, then $2^{n+3}$ divides $p^2-1$. [hide="comment"] Hi guys , Here is a nice problem: Let be given a sequence $a_n$ such that $a_0=2$ and $a_{n+1}=2a_n^2-1$ . Show that if $p$ is an odd prime such that $p|a_n$ then we have $p^2\equiv 1\pmod{2^{n+3}}$ Here are some futher question proposed by me :Prove or disprove that : 1) $gcd(n,a_n)=1$ 2) for every odd prime number $p$ we have $a_m\equiv \pm 1\pmod{p}$ where $m=\frac{p^2-1}{2^k}$ where $k=1$ or $2$ Thanks kiu si u [i]Edited by Orl.[/i] [/hide]

2015 ELMO Problems, 1

Define the sequence $a_1 = 2$ and $a_n = 2^{a_{n-1}} + 2$ for all integers $n \ge 2$. Prove that $a_{n-1}$ divides $a_n$ for all integers $n \ge 2$. [i]Proposed by Sam Korsky[/i]

2003 Czech And Slovak Olympiad III A, 3

A sequence $(x_n)_{n= 1}^{\infty}$ satisfies $x_1 = 1$ and for each $n > 1, x_n = \pm (n-1)x_{n-1} \pm (n-2)x_{n-2} \pm ... \pm 2x_2 \pm x_1$. Prove that the signs ” $\pm$” can be chosen so that $x_n \ne 12$ holds only for finitely many $n$.