This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2012 Purple Comet Problems, 22

The diagram below shows circles radius $1$ and $2$ externally tangent to each other and internally tangent to a circle radius $3$. There are relatively prime positive integers $m$ and $n$ so that a circle radius $\frac{m}{n}$ is internally tangent to the circle radius $3$ and externally tangent to the other two circles as shown. Find $m+n$. [asy] import graph; size(5cm); real labelscalefactor = 0.5; pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); pen dotstyle = black; draw(circle((8,2), 3)); draw(circle((8,1), 2)); draw(circle((8,4), 1)); draw((8,-1)--(8,5)); draw(circle((9.72,3.28), 0.86)); label("$ 2 $",(7.56,1.38),SE*labelscalefactor); label("$ 1 $",(7.6,4.39),SE*labelscalefactor); [/asy]

2005 Taiwan TST Round 2, 2

Starting from a positive integer $n$, we can replace the current number with a multiple of the current number or by deleting one or more zeroes from the decimal representation of the current number. Prove that for all values of $n$, it is possible to obtain a single-digit number by applying the above algorithm a finite number of times. There is a nice solution to this...

2013 NIMO Problems, 5

In a certain game, Auntie Hall has four boxes $B_1$, $B_2$, $B_3$, $B_4$, exactly one of which contains a valuable gemstone; the other three contain cups of yogurt. You are told the probability the gemstone lies in box $B_n$ is $\frac{n}{10}$ for $n=1,2,3,4$. Initially you may select any of the four boxes; Auntie Hall then opens one of the other three boxes at random (which may contain the gemstone) and reveals its contents. Afterwards, you may change your selection to any of the four boxes, and you win if and only if your final selection contains the gemstone. Let the probability of winning assuming optimal play be $\tfrac mn$, where $m$ and $n$ are relatively prime integers. Compute $100m+n$. [i]Proposed by Evan Chen[/i]

2011 AIME Problems, 9

Let $x_1,x_2,\dots ,x_6$ be nonnegative real numbers such that $x_1+x_2+x_3+x_4+x_5+x_6=1$, and $x_1x_3x_5+x_2x_4x_6 \geq \frac{1}{540}$. Let $p$ and $q$ be positive relatively prime integers such that $\frac{p}{q}$ is the maximum possible value of $x_1x_2x_3+x_2x_3x_4 + x_3x_4x_5 + x_4x_5x_6 + x_5x_6x_1 + x_6x_1x_2$. Find $p+q$.

2013 Online Math Open Problems, 39

Find the number of 8-digit base-6 positive integers $(a_1a_2a_3a_4a_5a_6a_7a_8)_6$ (with leading zeros permitted) such that $(a_1a_2\ldots a_8)_6\mid(a_{i+1}a_{i+2}\ldots a_{i+8})_6$ for $i=1,2,\ldots,7$, where indices are taken modulo $8$ (so $a_9=a_1$, $a_{10}=a_2$, and so on). [i]Victor Wang[/i]

1959 AMC 12/AHSME, 42

Given three positive integers $a,b,$ and $c$. Their greatest common divisor is $D$; their least common multiple is $m$. Then, which two of the following statements are true? $ \text{(1)}\ \text{the product MD cannot be less than abc} \qquad$ $\text{(2)}\ \text{the product MD cannot be greater than abc}\qquad$ $\text{(3)}\ \text{MD equals abc if and only if a,b,c are each prime}\qquad$ $\text{(4)}\ \text{MD equals abc if and only if a,b,c are each relatively prime in pairs}$ $\text{ (This means: no two have a common factor greater than 1.)}$ $ \textbf{(A)}\ 1,2 \qquad\textbf{(B)}\ 1,3\qquad\textbf{(C)}\ 1,4\qquad\textbf{(D)}\ 2,3\qquad\textbf{(E)}\ 2,4 $

2008 Poland - Second Round, 3

We have a positive integer $ n$ such that $ n \neq 3k$. Prove that there exists a positive integer $ m$ such that $ \forall_{k\in N \ k\geq m} \ k$ can be represented as a sum of digits of some multiplication of $ n$.

2010 Princeton University Math Competition, 4

Erick stands in the square in the 2nd row and 2nd column of a 5 by 5 chessboard. There are \$1 bills in the top left and bottom right squares, and there are \$5 bills in the top right and bottom left squares, as shown below. \[\begin{tabular}{|p{1em}|p{1em}|p{1em}|p{1em}|p{1em}|} \hline \$1 & & & & \$5 \\ \hline & E & & &\\ \hline & & & &\\ \hline & & & &\\ \hline \$5 & & & & \$1 \\ \hline \end{tabular}\] Every second, Erick randomly chooses a square adjacent to the one he currently stands in (that is, a square sharing an edge with the one he currently stands in) and moves to that square. When Erick reaches a square with money on it, he takes it and quits. The expected value of Erick's winnings in dollars is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2016 AMC 12/AHSME, 19

Jerry starts at 0 on the real number line. He tosses a fair coin 8 times. When he gets heads, he moves 1 unit in the positive direction; when he gets tails, he moves 1 unit in the negative direction. The probability that he reaches 4 at some time during this process is $a/b$, where $a$ and $b$ are relatively prime positive integers. What is $a+b$? (For example, he succeeds if his sequence of tosses is $HTHHHHHH$.) $\textbf{(A)}\ 69\qquad\textbf{(B)}\ 151\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 293\qquad\textbf{(E)}\ 313$

2013 IMC, 2

Let $\displaystyle{p,q}$ be relatively prime positive integers. Prove that \[\displaystyle{ \sum_{k=0}^{pq-1} (-1)^{\left\lfloor \frac{k}{p}\right\rfloor + \left\lfloor \frac{k}{q}\right\rfloor} = \begin{cases} 0 & \textnormal{ if } pq \textnormal{ is even}\\ 1 & \textnormal{if } pq \textnormal{ odd}\end{cases}}\] [i]Proposed by Alexander Bolbot, State University, Novosibirsk.[/i]

2007 Purple Comet Problems, 19

Six chairs sit in a row. Six people randomly seat themselves in the chairs. Each person randomly chooses either to set their feet on the floor, to cross their legs to the right, or to cross their legs to the left. There is only a problem if two people sitting next to each other have the person on the right crossing their legs to the left and the person on the left crossing their legs to the right. The probability that this will [b]not[/b] happen is given by $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2004 Putnam, B1

Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers $c_nr, c_nr^2+c_{n-1}r, c_nr^3+c_{n-1}r^2+c_{n-1}r, \dots, c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$ are all integers.

2012 Purple Comet Problems, 17

The diagram below shows nine points on a circle where $AB=BC=CD=DE=EF=FG=GH$. Given that $\angle GHJ=117^\circ$ and $\overline{BH}$ is perpendicular to $\overline{EJ}$, there are relatively prime positive integers $m$ and $n$ so that the degree measure of $\angle AJB$ is $\textstyle\frac mn$. Find $m+n$. [asy] size(175); defaultpen(linewidth(0.6)); draw(unitcircle,linewidth(0.9)); string labels[] = {"A","B","C","D","E","F","G"}; int start=110,increment=20; pair J=dir(210),x[],H=dir(start-7*increment); for(int i=0;i<=6;i=i+1) { x[i]=dir(start-increment*i); draw(J--x[i]--H); dot(x[i]); label("$"+labels[i]+"$",x[i],dir(origin--x[i])); } draw(J--H); dot(H^^J); label("$H$",H,dir(origin--H)); label("$J$",J,dir(origin--J)); [/asy]

2013 NIMO Problems, 7

Dragon selects three positive real numbers with sum $100$, uniformly at random. He asks Cat to copy them down, but Cat gets lazy and rounds them all to the nearest tenth during transcription. If the probability the three new numbers still sum to $100$ is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, compute $100m+n$. [i]Proposed by Aaron Lin[/i]

2014 AIME Problems, 14

In $\triangle ABC$, $AB=10$, $\angle A=30^\circ$, and $\angle C=45^\circ$. Let $H,D$, and $M$ be points on line $\overline{BC}$ such that $\overline{AH}\perp\overline{BC}$, $\angle BAD=\angle CAD$, and $BM=CM$. Point $N$ is the midpoint of segment $\overline{HM}$, and point $P$ is on ray $AD$ such that $\overline{PN}\perp\overline{BC}$. Then $AP^2=\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1990 Kurschak Competition, 1

Let $p>2$ be a prime number and $n$ a positive integer. Prove that $pn^2$ has at most one positive divisor $d$ for which $n^2+d$ is a square number.

1969 IMO Shortlist, 19

$(FRA 2)$ Let $n$ be an integer that is not divisible by any square greater than $1.$ Denote by $x_m$ the last digit of the number $x^m$ in the number system with base $n.$ For which integers $x$ is it possible for $x_m$ to be $0$? Prove that the sequence $x_m$ is periodic with period $t$ independent of $x.$ For which $x$ do we have $x_t = 1$. Prove that if $m$ and $x$ are relatively prime, then $0_m, 1_m, . . . , (n-1)_m$ are different numbers. Find the minimal period $t$ in terms of $n$. If n does not meet the given condition, prove that it is possible to have $x_m = 0 \neq x_1$ and that the sequence is periodic starting only from some number $k > 1.$

2014 NIMO Summer Contest, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2014 PUMaC Individual Finals A, 3

There are $n$ coins lying in a circle. Each coin has two sides, $+$ and $-$. A $flop$ means to flip every coin that has two different neighbors simultaneously, while leaving the others alone. For instance, $++-+$, after one $flop$, becomes $+---$. For $n$ coins, let us define $M$ to be a $perfect$ $number$ if for any initial arrangement of the coins, the arrangement of the coins after $m$ $flops$ is exactly the same as the initial one. (a) When $n=1024$, find a perfect number $M$. (b) Find all $n$ for which a perfect number $M$ exist.

2003 AIME Problems, 14

The decimal representation of $m/n$, where $m$ and $n$ are relatively prime positive integers and $m < n$, contains the digits 2, 5, and 1 consecutively, and in that order. Find the smallest value of $n$ for which this is possible.

2011 NIMO Problems, 1

A jar contains 4 blue marbles, 3 green marbles, and 5 red marbles. If Helen reaches in the jar and selects a marble at random, then the probability that she selects a red marble can be expressed as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

PEN D Problems, 12

Suppose that $m>2$, and let $P$ be the product of the positive integers less than $m$ that are relatively prime to $m$. Show that $P \equiv -1 \pmod{m}$ if $m=4$, $p^n$, or $2p^{n}$, where $p$ is an odd prime, and $P \equiv 1 \pmod{m}$ otherwise.

2012 AIME Problems, 9

Let $x$, $y$, and $z$ be positive real numbers that satisfy \[ 2\log_x(2y) = 2\log_{2x}(4z) = \log_{2x^4}(8yz) \neq 0. \] The value of $xy^5z$ can be expressed in the form $\frac{1}{2^{p/q}}$, where $p$ and $q$ are relatively prime integers. Find $p+q$.

1987 All Soviet Union Mathematical Olympiad, 449

Find a set of five different relatively prime natural numbers such, that the sum of an arbitrary subset is a composite number.

2011 AIME Problems, 6

Suppose that a parabola has vertex $\left(\tfrac{1}{4},-\tfrac{9}{8}\right)$, and equation $y=ax^2+bx+c$, where $a>0$ and $a+b+c$ is an integer. The minimum possible value of $a$ can be written as $\tfrac{p}{q},$ where $p$ and $q$ are relatively prime positive integers. Find $p+q$.