This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2004 AIME Problems, 13

Let $ABCDE$ be a convex pentagon with $AB\parallel CE$, $BC\parallel AD$, $AC\parallel DE$, $\angle ABC=120^\circ$, $AB=3$, $BC=5$, and $DE=15$. Given that the ratio between the area of triangle $ABC$ and the area of triangle $EBD$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

2019 USAMO, 5

Two rational numbers \(\tfrac{m}{n}\) and \(\tfrac{n}{m}\) are written on a blackboard, where \(m\) and \(n\) are relatively prime positive integers. At any point, Evan may pick two of the numbers \(x\) and \(y\) written on the board and write either their arithmetic mean \(\tfrac{x+y}{2}\) or their harmonic mean \(\tfrac{2xy}{x+y}\) on the board as well. Find all pairs \((m,n)\) such that Evan can write 1 on the board in finitely many steps. [i]Proposed by Yannick Yao[/i]

2009 Belarus Team Selection Test, 1

Denote by $\phi(n)$ for all $n\in\mathbb{N}$ the number of positive integer smaller than $n$ and relatively prime to $n$. Also, denote by $\omega(n)$ for all $n\in\mathbb{N}$ the number of prime divisors of $n$. Given that $\phi(n)|n-1$ and $\omega(n)\leq 3$. Prove that $n$ is a prime number.

2003 Romania Team Selection Test, 10

Let $\mathcal{P}$ be the set of all primes, and let $M$ be a subset of $\mathcal{P}$, having at least three elements, and such that for any proper subset $A$ of $M$ all of the prime factors of the number $ -1+\prod_{p\in A}p$ are found in $M$. Prove that $M= \mathcal{P}$. [i]Valentin Vornicu[/i]

2000 AIME Problems, 11

Let $S$ be the sum of all numbers of the form $a/b,$ where $a$ and $b$ are relatively prime positive divisors of $1000.$ What is the greatest integer that does not exceed $S/10?$

2013 Online Math Open Problems, 19

Let $\sigma(n)$ be the number of positive divisors of $n$, and let $\operatorname{rad} n$ be the product of the distinct prime divisors of $n$. By convention, $\operatorname{rad} 1 = 1$. Find the greatest integer not exceeding \[ 100\left(\sum_{n=1}^{\infty}\frac{\sigma(n)\sigma(n \operatorname{rad} n)}{n^2\sigma(\operatorname{rad} n)}\right)^{\frac{1}{3}}. \][i]Proposed by Michael Kural[/i]

2006 Estonia Math Open Junior Contests, 4

Does there exist a natural number with the sum of digits of its $ kth$ power being equal to $ k$, if a) $ k \equal{} 2004$; b) $ k \equal{} 2006?$

2004 India Regional Mathematical Olympiad, 6

Let $p_1, p_2, \ldots$ be a sequence of primes such that $p_1 =2$ and for $n\geq 1, p_{n+1}$ is the largest prime factor of $p_1 p_2 \ldots p_n +1$ . Prove that $p_n \not= 5$ for any $n$.

2013 NIMO Problems, 2

If $\frac{2+4+6}{1+3+5}-\frac{1+3+5}{2+4+6} = \frac{m}{n}$ for relatively prime integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

1978 All Soviet Union Mathematical Olympiad, 258

Let $f(x) = x^2 - x + 1$. Prove that for every natural $m>1$ the numbers $$m, f(m), f(f(m)), ...$$ are relatively prime.

2010 Purple Comet Problems, 15

Find the smallest possible sum $a + b + c + d + e$ where $a, b, c, d,$ and $e$ are positive integers satisfying the conditions $\star$ each of the pairs of integers $(a, b), (b, c), (c, d),$ and $(d, e)$ are [b]not[/b] relatively prime $\star$ all other pairs of the five integers [b]are[/b] relatively prime.

2010 Contests, 1

A function $f : \mathbb{Z}_+ \to \mathbb{Z}_+$, where $\mathbb{Z}_+$ is the set of positive integers, is non-decreasing and satisfies $f(mn) = f(m)f(n)$ for all relatively prime positive integers $m$ and $n$. Prove that $f(8)f(13) \ge (f(10))^2$.

PEN D Problems, 16

Determine all positive integers $n \ge 2$ that satisfy the following condition; For all integers $a, b$ relatively prime to $n$, \[a \equiv b \; \pmod{n}\Longleftrightarrow ab \equiv 1 \; \pmod{n}.\]

2008 Baltic Way, 3

Does there exist an angle $ \alpha\in(0,\pi/2)$ such that $ \sin\alpha$, $ \cos\alpha$, $ \tan\alpha$ and $ \cot\alpha$, taken in some order, are consecutive terms of an arithmetic progression?

1993 India Regional Mathematical Olympiad, 2

Prove that the ten's digit of any power of 3 is even.

1987 AMC 8, 9

When finding the sum $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}$, the least common denominator used is $\text{(A)}\ 120 \qquad \text{(B)}\ 210 \qquad \text{(C)}\ 420 \qquad \text{(D)}\ 840 \qquad \text{(E)}\ 5040$

2015 Romania Masters in Mathematics, 1

Does there exist an infinite sequence of positive integers $a_1, a_2, a_3, . . .$ such that $a_m$ and $a_n$ are coprime if and only if $|m - n| = 1$?

2004 China Second Round Olympiad, 3

For integer $n\ge 4$, find the minimal integer $f(n)$, such that for any positive integer $m$, in any subset with $f(n)$ elements of the set ${m, m+1, \ldots, m+n+1}$ there are at least $3$ relatively prime elements.

2000 AIME Problems, 13

In the middle of a vast prairie, a firetruck is stationed at the intersection of two perpendicular straight highways. The truck travels at $50$ miles per hour along the highways and at $14$ miles per hour across the prairie. Consider the set of points that can be reached by the firetruck within six minutes. The area of this region is $m/n$ square miles, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2008 Stars Of Mathematics, 3

Let $ k > 1$ be an integer, and consider the in finite array given by the integer lattice in the first quadrant of the plane, filled with real numbers. The array is said to be constant if all its elements are equal in value. The array is said to be $ k$-balanced if it is non-constant, and the sums of the elements of any $ k\times k$ sub-square have a constant value $ v_k$. An array which is both $ p$-balanced and $ q$-balanced will be said to be $ (p, q)$-balanced, or just doubly-balanced, if there is no confusion as to which $ p$ and $ q$ are meant. If $p, q$ are relatively prime, the array is said to be co-prime. We will call $ (M\times N)$-seed a $ M \times N$ array, anchored with its lower left corner in the origin of the plane, which extended through periodicity in both dimensions in the plane results into a $ (p, q)$-balanced array; more precisely, if we denote the numbers in the array by $ a_{ij}$ , where $ i, j$ are the coordinates of the lower left corner of the unit square they lie in, we have, for all non-negative integers $ i, j$ \[ a_{i \plus{} M,j} \equal{} a_{i,j} \equal{} a_{i,j \plus{} N}\] (a) Prove that $ q^2v_p \equal{} p^2v_q$ for a $ (p, q)$-balanced array. (b) Prove that more than two different values are used in a co-prime $ (p,q)$-balanced array. Show that this is no longer true if $ (p, q) > 1$. (c) Prove that any co-prime $ (p, q)$-balanced array originates from a seed. (d) Show there exist $ (p, q)$-balanced arrays (using only three different values) for arbitrary values $ p, q$. (e) Show that neither a $ k$-balanced array, nor a $ (p, q)$-balanced array if $ (p, q) > 1$, need originate from a seed. (f) Determine the minimal possible value $ T$ for a square $ (T\times T)$-seed resulting in a co-prime $ (p, q)$-balanced array, when $p,q$ are both prime. (g) Show that for any relatively prime $ p, q$ there must exist a co-prime $ (p, q)$-balanced array originating from a square $ (T\times T)$-seed, with no lesser $ (M\times N)$-seed available ($ M\leq T, N\leq T$ and $MN< T^2$). [i]Dan Schwarz[/i]

2014 NIMO Problems, 6

10 students are arranged in a row. Every minute, a new student is inserted in the row (which can occur in the front and in the back as well, hence $11$ possible places) with a uniform $\tfrac{1}{11}$ probability of each location. Then, either the frontmost or the backmost student is removed from the row (each with a $\tfrac{1}{2}$ probability). Suppose you are the eighth in the line from the front. The probability that you exit the row from the front rather than the back is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $100m+n$. [i]Proposed by Lewis Chen[/i]

2001 Korea Junior Math Olympiad, 2

$n$ is a product of some two consecutive primes. $s(n)$ denotes the sum of the divisors of $n$ and $p(n)$ denotes the number of relatively prime positive integers not exceeding $n$. Express $s(n)p(n)$ as a polynomial of $n$.

PEN A Problems, 112

Prove that there exist infinitely many pairs $(a, b)$ of relatively prime positive integers such that \[\frac{a^{2}-5}{b}\;\; \text{and}\;\; \frac{b^{2}-5}{a}\] are both positive integers.

2013 ELMO Problems, 3

Let $m_1,m_2,...,m_{2013} > 1$ be 2013 pairwise relatively prime positive integers and $A_1,A_2,...,A_{2013}$ be 2013 (possibly empty) sets with $A_i\subseteq \{1,2,...,m_i-1\}$ for $i=1,2,...,2013$. Prove that there is a positive integer $N$ such that \[ N \le \left( 2\left\lvert A_1 \right\rvert + 1 \right)\left( 2\left\lvert A_2 \right\rvert + 1 \right)\cdots\left( 2\left\lvert A_{2013} \right\rvert + 1 \right) \] and for each $i = 1, 2, ..., 2013$, there does [i]not[/i] exist $a \in A_i$ such that $m_i$ divides $N-a$. [i]Proposed by Victor Wang[/i]

2005 AIME Problems, 2

A hotel packed breakfast for each of three guests. Each breakfast should have consisted of three types of rolls, one each of nut, cheese, and fruit rolls. The preparer wrapped each of the nine rolls and once wrapped, the rolls were indistinguishable from one another. She then randomly put three rolls in a bag for each of the guests. Given that the probability each guest got one roll of each type is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.