Found problems: 698
1987 India National Olympiad, 1
Given $ m$ and $ n$ as relatively prime positive integers greater than one, show that
\[ \frac{\log_{10} m}{\log_{10} n}\]
is not a rational number.
2013 USAMTS Problems, 4
Bunbury the bunny is hopping on the positive integers. First, he is told a positive integer $n$. Then Bunbury chooses positive integers $a,d$ and hops on all of the spaces $a,a+d,a+2d,\dots,a+2013d$. However, Bunbury must make these choices so that the number of every space that he hops on is less than $n$ and relatively prime to $n$.
A positive integer $n$ is called [i]bunny-unfriendly[/i] if, when given that $n$, Bunbury is unable to find positive integers $a,d$ that allow him to perform the hops he wants. Find the maximum bunny-unfriendly integer, or prove that no such maximum exists.
2011 Baltic Way, 6
Let $n$ be a positive integer. Prove that the number of lines which go through the origin and precisely one other point with integer coordinates $(x,y),0\le x,y\le n$, is at least $\frac{n^2}{4}$.
2013 Harvard-MIT Mathematics Tournament, 9
Let $m$ be an odd positive integer greater than $1$. Let $S_m$ be the set of all non-negative integers less than $m$ which are of the form $x+y$, where $xy-1$ is divisible by $m$. Let $f(m)$ be the number of elements of $S_m$.
[b](a)[/b] Prove that $f(mn)=f(m)f(n)$ if $m$, $n$ are relatively prime odd integers greater than $1$.
[b](b)[/b] Find a closed form for $f(p^k)$, where $k>0$ is an integer and $p$ is an odd prime.
1992 AIME Problems, 1
Find the sum of all positive rational numbers that are less than $10$ and that have denominator $30$ when written in lowest terms.
2013 Kazakhstan National Olympiad, 2
Let for natural numbers $a,b,c$ and any natural $n$ we have that
$(abc)^n$ divides $ ((a^n-1)(b^n-1)(c^n-1)+1)^3$. Prove that then $a=b=c$.
2021 Iran Team Selection Test, 3
Prove there exist two relatively prime polynomials $P(x),Q(x)$ having integer coefficients and a real number $u>0$ such that if for positive integers $a,b,c,d$ we have:
$$|\frac{a}{c}-1|^{2021} \le \frac{u}{|d||c|^{1010}}$$
$$| (\frac{a}{c})^{2020}-\frac{b}{d}| \le \frac{u}{|d||c|^{1010}}$$
Then we have :
$$bP(\frac{a}{c})=dQ(\frac{a}{c})$$
(Two polynomials are relatively prime if they don't have a common root)
Proposed by [i]Navid Safaii[/i] and [i]Alireza Haghi[/i]
2009 Purple Comet Problems, 25
The polynomial $P(x)=a_0+a_1x+a_2x^2+...+a_8x^8+2009x^9$ has the property that $P(\tfrac{1}{k})=\tfrac{1}{k}$ for $k=1,2,3,4,5,6,7,8,9$. There are relatively prime positive integers $m$ and $n$ such that $P(\tfrac{1}{10})=\tfrac{m}{n}$. Find $n-10m$.
2001 IMC, 2
Let $r,s,t$ positive integers which are relatively prime and $a,b \in G$, $G$ a commutative multiplicative group with unit element $e$, and $a^r=b^s=(ab)^t=e$.
(a) Prove that $a=b=e$.
(b) Does the same hold for a non-commutative group $G$?
2011 Croatia Team Selection Test, 4
We define the sequence $x_n$ so that
\[x_1=a, x_2=b, x_n=\frac{{x_{n-1}}^2+{x_{n-2}}^2}{x_{n-1}+x_{n-2}} \quad \forall n \geq 3.\]
Where $a,b >1$ are relatively prime numbers. Show that $x_n$ is not an integer for $n \geq 3$.
1979 IMO Shortlist, 7
If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.
1965 All Russian Mathematical Olympiad, 068
Given two relatively prime numbers $p>0$ and $q>0$. An integer $n$ is called "good" if we can represent it as $n = px + qy$ with nonnegative integers $x$ and $y$, and "bad" in the opposite case.
a) Prove that there exist integer $c$ such that in a pair $\{n, c-n\}$ always one is "good" and one is "bad".
b) How many there exist "bad" numbers?
1999 Putnam, 6
Let $S$ be a finite set of integers, each greater than $1$. Suppose that for each integer $n$ there is some $s\in S$ such that $\gcd(s,n)=1$ or $\gcd(s,n)=s$. Show that there exist $s,t\in S$ such that $\gcd(s,t)$ is prime.
2017 Princeton University Math Competition, A7
Let $ACDB$ be a cyclic quadrilateral with circumcenter $\omega$. Let $AC=5$, $CD=6$, and $DB=7$. Suppose that there exists a unique point $P$ on $\omega$ such that $\overline{PC}$ intersects $\overline{AB}$ at a point $P_1$ and $\overline{PD}$ intersects $\overline{AB}$ at a point $P_2$, such that $AP_1=3$ and $P_2B=4$. Let $Q$ be the unique point on $\omega$ such that $\overline{QC}$ intersects $\overline{AB}$ at a point $Q_1$, $\overline{QD}$ intersects $\overline{AB}$ at a point $Q_2$, $Q_1$ is closer to $B$ than $P_1$ is to $B$, and $P_2Q_2=2$. The length of $P_1Q_1$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
2000 AIME Problems, 11
The coordinates of the vertices of isosceles trapezoid $ABCD$ are all integers, with $A=(20,100)$ and $D=(21,107).$ The trapezoid has no horizontal or vertical sides, and $\overline{AB}$ and $\overline{CD}$ are the only parallel sides. The sum o f the absolute values of all possible slopes for $\overline{AB}$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2012 Korea - Final Round, 2
Let $n$ be a given positive integer. Prove that there exist infinitely many integer triples $(x,y,z)$ such that
\[nx^2+y^3=z^4,\ \gcd (x,y)=\gcd (y,z)=\gcd (z,x)=1.\]
2011 AIME Problems, 11
Let $M_n$ be the $n\times n$ matrix with entries as follows: for $1\leq i \leq n$, $m_{i,i}=10$; for $1\leq i \leq n-1, m_{i+1,i}=m_{i,i+1}=3$; all other entries in $M_n$ are zero. Let $D_n$ be the determinant of matrix $M_n$. Then $\displaystyle \sum_{n=1}^{\infty} \dfrac{1}{8D_n+1}$ can be represented as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
Note: The determinant of the $1\times 1$ matrix $[a]$ is $a$, and the determinant of the $2\times 2$ matrix $\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right]=ad-bc$; for $n\geq 2$, the determinant of an $n\times n$ matrix with first row or first column $a_1\ a_2\ a_3 \dots\ a_n$ is equal to $a_1C_1 - a_2C_2 + a_3C_3 - \dots + (-1)^{n+1} a_nC_n$, where $C_i$ is the determinant of the $(n-1)\times (n-1)$ matrix found by eliminating the row and column containing $a_i$.
2012 Purple Comet Problems, 16
The following sequence lists all the positive rational numbers that do not exceed $\frac12$ by first listing the fraction with denominator 2, followed by the one with denominator 3, followed by the two fractions with denominator 4 in increasing order, and so forth so that the sequence is
\[
\frac12,\frac13,\frac14,\frac24,\frac15,\frac25,\frac16,\frac26,\frac36,\frac17,\frac27,\frac37,\cdots.
\]
Let $m$ and $n$ be relatively prime positive integers so that the $2012^{\text{th}}$ fraction in the list is equal to $\frac{m}{n}$. Find $m+n$.
2011 USA Team Selection Test, 6
A polynomial $P(x)$ is called [i]nice[/i] if $P(0) = 1$ and the nonzero coefficients of $P(x)$ alternate between $1$ and $-1$ when written in order. Suppose that $P(x)$ is nice, and let $m$ and $n$ be two relatively prime positive integers. Show that
\[Q(x) = P(x^n) \cdot \frac{(x^{mn} - 1)(x-1)}{(x^m-1)(x^n-1)}\]
is nice as well.
1993 Greece National Olympiad, 11
Alfred and Bonnie play a game in which they take turns tossing a fair coin. The winner of a game is the first person to obtain a head. Alfred and Bonnie play this game several times with the stipulation that the loser of a game goes first in the next game. Suppose that Alfred goes first in the first game, and that the probability that he wins the sixth game is $m/n$, where $m$ and $n$ are relatively prime positive integers. What are the last three digits of $m + n$?
2010 Purple Comet Problems, 10
A baker uses $6\tfrac{2}{3}$ cups of flour when she prepares $\tfrac{5}{3}$ recipes of rolls. She will use $9\tfrac{3}{4}$ cups of flour when she prepares $\tfrac{m}{n}$ recipes of rolls where m and n are relatively prime positive integers. Find $m + n.$
1998 Hong kong National Olympiad, 3
Given $s,t$ are non-zero integers, $(x,y) $ is an integer pair , A transformation is to change pair $(x,y)$ into pair $(x+t,y-s)$ . If the two integers in a certain pair becoems relatively prime after several tranfomations , then we call the original integer pair "a good pair" .
(1) Is $(s,t)$ a good pair ?
(2) Prove :for any $s$ and $t$ , there exists pair $(x,y)$ which is " a good pair".
1990 AIME Problems, 10
The sets $A = \{z : z^{18} = 1\}$ and $B = \{w : w^{48} = 1\}$ are both sets of complex roots of unity. The set $C = \{zw : z \in A \ \text{and} \ w \in B\}$ is also a set of complex roots of unity. How many distinct elements are in $C$?
2010 AIME Problems, 2
A point $ P$ is chosen at random in the interior of a unit square $ S$. Let $ d(P)$ denote the distance from $ P$ to the closest side of $ S$. The probability that $ \frac15\le d(P)\le\frac13$ is equal to $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
2011 Czech-Polish-Slovak Match, 3
Let $a$ be any integer. Prove that there are infinitely many primes $p$ such that \[ p\,|\,n^2+3\qquad\text{and}\qquad p\,|\,m^3-a \] for some integers $n$ and $m$.