This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2023 4th Memorial "Aleksandar Blazhevski-Cane", P4

Let $ABCD$ be a cyclic quadrilateral such that $AB = AD + BC$ and $CD < AB$. The diagonals $AC$ and $BD$ intersect at $P$, while the lines $AD$ and $BC$ intersect at $Q$. The angle bisector of $\angle APB$ meets $AB$ at $T$. Show that the circumcenter of the triangle $CTD$ lies on the circumcircle of the triangle $CQD$. [i]Proposed by Nikola Velov[/i]