This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 241

2015 Kyiv Math Festival, P4

Let $O$ be the intersection point of altitudes $AD$ and $BE$ of equilateral triangle $ABC.$ Points $K$ and $L$ are chosen inside segments $AO$ and $BO$ respectively such that line $KL$ bisects the perimeter of triangle $ABC.$ Let $F$ be the intersection point of lines $EK$ and $DL.$ Prove that $O$ is the circumcenter of triangle $DEF.$

2014 Ukraine Team Selection Test, 4

The $A$-excircle of the triangle $ABC$ touches the side $BC$ at point $K$. The circumcircles of triangles $AKB$ and $AKC$ intersect for the second time with the bisector of angle $A$ at points $X$ and $Y$ respectively. Let $M$ be the midpoint of $BC$. Prove that the circumcenter of triangle $XYM$ lies on $BC$.

2006 Estonia Team Selection Test, 2

The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.

2021 Sharygin Geometry Olympiad, 8.6

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB\parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ\parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circle $(PXQ)$.

1987 All Soviet Union Mathematical Olympiad, 454

Vertex $B$ of the $\angle ABC$ lies out the circle, and the $[BA)$ and $[BC)$ beams intersect it. Point $K$ belongs to the intersection of the $[BA)$ beam and the circumference. Chord $KP$ is orthogonal to the angle bisector of $\angle ABC$ . Line $(KP)$ intersects the beam $BC$ in the point $M$. Prove that the segment $[PM]$ is twice as long as the distance from the circle centre to the angle bisector of $\angle ABC$ .

2024 Philippine Math Olympiad, P7

Let $ABC$ be an acute triangle with orthocenter $H$, circumcenter $O$, and circumcircle $\Omega$. Points $E$ and $F$ are the feet of the altitudes from $B$ to $AC$, and from $C$ to $AB$, respectively. Let line $AH$ intersect $\Omega$ again at $D$. The circumcircle of $DEF$ intersects $\Omega$ again at $X$, and $AX$ intersects $BC$ at $I$. The circumcircle of $IEF$ intersects $BC$ again at $G$. If $M$ is the midpoint of $BC$, prove that lines $MX$ and $OG$ intersect on $\Omega$.

2000 Tournament Of Towns, 2

The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$. (A Zaslavsky )

2004 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$. [i]Proposed by C.R. Pranesachar, India [/i]

2019 Yasinsky Geometry Olympiad, p6

The board features a triangle $ABC$, its center of the circle circumscribed is the point $O$, the midpoint of the side $BC$ is the point $F$, and also some point $K$ on side $AC$ (see fig.). Master knowing that $\angle BAC$ of this triangle is equal to the sharp angle $\alpha$ has separately drawn an angle equal to $\alpha$. After this teacher wiped the board, leaving only the points $O, F, K$ and the angle $\alpha$. Is it possible with a compass and a ruler to construct the triangle $ABC$ ? Justify the answer. (Grigory Filippovsky) [img]https://1.bp.blogspot.com/-RRPt8HbqW4I/XObthZFXyyI/AAAAAAAAKOo/zfHemPjUsI4XAfV_tcmKA6_al0i_gQ9iACK4BGAYYCw/s1600/Yasinsky%2B2019%2Bp6.png[/img]

1990 IMO Longlists, 96

Suppose that points $X, Y,Z$ are located on sides $BC, CA$, and $AB$, respectively, of triangle $ABC$ in such a way that triangle $XY Z$ is similar to triangle $ABC$. Prove that the orthocenter of triangle $XY Z$ is the circumcenter of triangle $ABC.$

2021 Caucasus Mathematical Olympiad, 7

An acute triangle $ABC$ is given. Let $AD$ be its altitude, let $H$ and $O$ be its orthocenter and its circumcenter, respectively. Let $K$ be the point on the segment $AH$ with $AK=HD$; let $L$ be the point on the segment $CD$ with $CL=DB$. Prove that line $KL$ passes through $O$.

Croatia MO (HMO) - geometry, 2018.3

Let $k$ be a circle centered at $O$. Let $\overline{AB}$ be a chord of that circle and $M$ its midpoint. Tangent on $k$ at points $A$ and $B$ intersect at $T$. The line $\ell$ goes through $T$, intersect the shorter arc $AB$ at the point $C$ and the longer arc $AB$ at the point $D$, so that $|BC| = |BM|$. Prove that the circumcenter of the triangle $ADM$ is the reflection of $O$ across the line $AD$

2021-IMOC qualification, G1

Let $O$ be the circumcenter and $I$ be the incenter of $\vartriangle$, $P$ is the reflection from $I$ through $O$, the foot of perpendicular from $P$ to $BC,CA,AB$ is $X,Y,Z$, respectively. Prove that $AP^2+PX^2=BP^2+PY^2=CP^2+PZ^2$.

2014 Sharygin Geometry Olympiad, 17

Let $AC$ be the hypothenuse of a right-angled triangle $ABC$. The bisector $BD$ is given, and the midpoints $E$ and $F$ of the arcs $BD$ of the circumcircles of triangles $ADB$ and $CDB$ respectively are marked (the circles are erased). Construct the centers of these circles using only a ruler.

2019 Argentina National Olympiad Level 2, 3

Let $\Gamma$ be a circle of center $S$ and radius $r$ and let be $A$ a point outside the circle. Let $BC$ be a diameter of $\Gamma$ such that $B$ does not belong to the line $AS$ and consider the point $O$ where the perpendicular bisectors of triangle $ABC$ intersect, that is, the circumcenter of $ABC$. Determine all possible locations of point $O$ when $B$ varies in circle $\Gamma$.

2017 Thailand Mathematical Olympiad, 2

A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.

2019 Irish Math Olympiad, 5

Let $M$ be a point on the side $BC$ of triangle $ABC$ and let $P$ and $Q$ denote the circumcentres of triangles $ABM$ and $ACM$ respectively. Let $L$ denote the point of intersection of the extended lines $BP$ and $CQ$ and let $K$ denote the reflection of $L$ through the line $PQ$. Prove that $M, P, Q$ and $K$ all lie on the same circle.

2016 Thailand TSTST, 2

Let $\omega$ be a circle touching two parallel lines $\ell_1, \ell_2$, $\omega_1$ a circle touching $\ell_1$ at $A$ and $\omega$ externally at $C$, and $\omega_2$ a circle touching $\ell_2$ at $B$, $\omega$ externally at $D$, and $\omega_1$ externally at $E$. Prove that $AD, BC$ intersect at the circumcenter of $\vartriangle CDE$.

1987 IMO Shortlist, 5

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

1956 Moscow Mathematical Olympiad, 333

Let $O$ be the center of the circle circumscribed around $\vartriangle ABC$, let $A_1, B_1, C_1$ be symmetric to $O$ through respective sides of $\vartriangle ABC$. Prove that all altitudes of $\vartriangle A_1B_1C_1$ pass through $O$, and all altitudes of $\vartriangle ABC$ pass through the center of the circle circumscribed around $\vartriangle A_1B_1C_1$.

Kyiv City MO Juniors 2003+ geometry, 2010.89.4

Point $O$ is the center of the circumcircle of the acute triangle $ABC$. The line $AO$ intersects the side $BC$ at point $D$ so that $OD = BD = 1/3 BC$ . Find the angles of the triangle $ABC$. Justify the answer.

2008 Abels Math Contest (Norwegian MO) Final, 4b

A point $D$ lies on the side $BC$ , and a point $E$ on the side $AC$ , of the triangle $ABC$ , and $BD$ and $AE$ have the same length. The line through the centres of the circumscribed circles of the triangles $ADC$ and $BEC$ crosses $AC$ in $K$ and $BC$ in $L$. Show that $KC$ and $LC$ have the same length.

2018 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide. by Evangelos Psychas, Greece

2015 Saudi Arabia GMO TST, 3

Let $BD$ and $CE$ be altitudes of an arbitrary scalene triangle $ABC$ with orthocenter $H$ and circumcenter $O$. Let $M$ and $N$ be the midpoints of sides $AB$, respectively $AC$, and $P$ the intersection point of lines $MN$ and $DE$. Prove that lines $AP$ and $OH$ are perpendicular. Liana Topan

2021 Ukraine National Mathematical Olympiad, 4

Let $O, I, H$ be the circumcenter, the incenter, and the orthocenter of $\triangle ABC$. The lines $AI$ and $AH$ intersect the circumcircle of $\triangle ABC$ for the second time at $D$ and $E$, respectively. Prove that if $OI \parallel BC$, then the circumcenter of $\triangle OIH$ lies on $DE$. (Fedir Yudin)