This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

1992 Yugoslav Team Selection Test, Problem 2

Periodic sequences $(a_n),(b_n),(c_n)$ and $(d_n)$ satisfy the following conditions: $$a_{n+1}=a_n+b_n,\enspace\enspace b_{n+1}=b_n+c_n,$$ $$c_{n+1}=c_n+d_n,\enspace\enspace d_{n+1}=d_n+a_n,$$ for $n=1,2,\ldots$. Prove that $a_2=b_2=c_2=d_2=0$.

1985 All Soviet Union Mathematical Olympiad, 405

The sequence $a_1, a_2, ... , a_k, ...$ is constructed according to the rules: $$a_{2n} = a_n,a_{4n+1} = 1,a_{4n+3} = 0$$Prove that it is non-periodical sequence.

2010 VTRMC, Problem 6

Define a sequence by $a_1=1,a_2=\frac12$, and $a_{n+2}=a_{n+1}-\frac{a_na_{n+1}}2$ for $n$ a positive integer. Find $\lim_{n\to\infty}na_n$.

2024 Singapore Senior Math Olympiad, Q5

Let $a_1,a_2,\dots$ be a sequence of positive numbers satisfying, for any positive integers $k,l,m,n$ such that $k+n=m+l$, $$\frac{a_k+a_n}{1+a_ka_n}=\frac{a_m+a_l}{1+a_ma_l}.$$Show that there exist positive numbers $b,c$ so that $b\le a_n\le c$ for any positive integer $n$.

1981 IMO Shortlist, 16

A sequence of real numbers $u_1, u_2, u_3, \dots$ is determined by $u_1$ and the following recurrence relation for $n \geq 1$: \[4u_{n+1} = \sqrt[3]{ 64u_n + 15.}\] Describe, with proof, the behavior of $u_n$ as $n \to \infty.$

2024 Junior Macedonian Mathematical Olympiad, 4

Let $a_1, a_2, ..., a_n$ be a sequence of perfect squares such that $a_{i + 1}$ can be obtained by concatenating a digit to the right of $a_i$. Determine all such sequences that are of maximum length. [i]Proposed by Ilija Jovčeski[/i]

1973 Bulgaria National Olympiad, Problem 1

Let the sequence $a_1,a_2,\ldots,a_n,\ldots$ is defined by the conditions: $a_1=2$ and $a_{n+1}=a_n^2-a_n+1$ $(n=1,2,\ldots)$. Prove that: (a) $a_m$ and $a_n$ are relatively prime numbers when $m\ne n$. (b) $\lim_{n\to\infty}\sum_{k=1}^n\frac1{a_k}=1$ [i]I. Tonov[/i]

2016 Miklós Schweitzer, 4

Prove that there exists a sequence $a(1),a(2),\dots,a(n),\dots$ of real numbers such that \[ a(n+m)\le a(n)+a(m)+\frac{n+m}{\log (n+m)} \] for all integers $m,n\ge 1$, and such that the set $\{a(n)/n:n\ge 1\}$ is everywhere dense on the real line. [i]Remark.[/i] A theorem of de Bruijn and Erdős states that if the inequality above holds with $f(n + m)$ in place of the last term on the right-hand side, where $f(n)\ge 0$ is nondecreasing and $\sum_{n=2}^\infty f(n)/n^2<\infty$, then $a(n)/n$ converges or tends to $(-\infty)$.

Russian TST 2019, P2

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

1989 Romania Team Selection Test, 2

The sequence ($a_n$) is defined by $a_1 = a_2 = 1, a_3 = 199$ and $a_{n+1} =\frac{1989+a_na_{n-1}}{a_{n-2}}$ for all $n \ge 3$. Prove that all terms of the sequence are positive integers

2013 IFYM, Sozopol, 1

Let $u_1=1,u_2=2,u_3=24,$ and $u_{n+1}=\frac{6u_n^2 u_{n-2}-8u_nu_{n-1}^2}{u_{n-1}u_{n-2}}, n \geq 3.$ Prove that the elements of the sequence are natural numbers and that $n\mid u_n$ for all $n$.

2015 Romania Team Selection Tests, 3

Define a sequence of integers by $a_0=1$ , and $a_n=\sum_{k=0}^{n-1} \binom{n}{k}a_k$ , $n \geq 1$ . Let $m$ be a positive integer , let $p$ be a prime , and let $q$ and $r$ be non-negative integers . Prove that : $$a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}$$

2020 Tournament Of Towns, 1

$2020$ positive integers are written in one line. Each of them starting with the third is divisible by previous and by the sum of two previous numbers. What is the smallest value the last number can take? A. Gribalko

Kvant 2020, M2603

For an infinite sequence $a_1, a_2,. . .$ denote as it's [i]first derivative[/i] is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence [i]good[/i] if it and all its derivatives consist of positive numbers. Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one. R. Salimov

2022 USAJMO, 1

For which positive integers $m$ does there exist an infinite arithmetic sequence of integers $a_1, a_2, . . .$ and an infinite geometric sequence of integers $g_1, g_2, . . .$ satisfying the following properties? [list] [*] $a_n - g_n$ is divisible by $m$ for all integers $n \ge 1$; [*] $a_2 - a_1$ is not divisible by $m$. [/list] [i]Holden Mui[/i]

2000 German National Olympiad, 6

A sequence ($a_n$) satisfies the following conditions: (i) For each $m \in N$ it holds that $a_{2^m} = 1/m$. (ii) For each natural $n \ge 2$ it holds that $a_{2n-1}a_{2n} = a_n$. (iii) For all integers $m,n$ with $2m > n \ge 1$ it holds that $a_{2n}a_{2n+1} = a_{2^m+n}$. Determine $a_{2000}$. You may assume that such a sequence exists.

2022 Greece Team Selection Test, 3

Find largest possible constant $M$ such that, for any sequence $a_n$, $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$, $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$\frac{a_{n+1}}{a_n} >M$$ for any integer $n\ge 0$.

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

1979 All Soviet Union Mathematical Olympiad, 281

Tags: sequence , algebra
The finite sequence $a_1, a_2, ... , a_n$ of ones and zeroes should satisfy a condition: [i]for every $k$ from $0$ to $(n-1)$ the sum a_1a_{k+1} + a_2a_{k+2} + ... + a_{n-k}a_n should be odd.[/i] a) Construct such a sequence for $n=25$. b) Prove that there exists such a sequence for some $n > 1000$.

2022 Iran Team Selection Test, 5

Tags: algebra , sequence
Find all $C\in \mathbb{R}$ such that every sequence of integers $\{a_n\}_{n=1}^{\infty}$ which is bounded from below and for all $n\geq 2$ satisfy $$0\leq a_{n-1}+Ca_n+a_{n+1}<1$$ is periodic. Proposed by Navid Safaei

1972 Putnam, B1

Tags: sequence
Let $\sum_{n=0}^{\infty} \frac{x^n (x-1)^{2n}}{n!}=\sum_{n=0}^{\infty} a_{n}x^{n}$. Show that no three consecutive $a_n$ can be equal to $0$.

2015 Saudi Arabia BMO TST, 1

Prove that for any integer $n \ge 2$, there exists a unique finite sequence $x_0, x_1,..., x_n$ of real numbers which satisfies $x_0 = x_n = 0$ and $x_{i+1} - 8x_i^3 -4x_i + 3x_{i-1} + 1 = 0$ for all $i = 1,2,...,n - 1$. Prove moreover that $ |x_i| \le \frac12$ for all $i = 1,2,...,n - 1$. Nguyễn Duy Thái Sơn

2020 Brazil Undergrad MO, Problem 2

For a positive integer $a$, define $F_1 ^{(a)}=1$, $F_2 ^{(a)}=a$ and for $n>2$, $F_n ^{(a)}=F_{n-1} ^{(a)}+F_{n-2} ^{(a)}$. A positive integer is fibonatic when it is equal to $F_n ^{(a)}$ for a positive integer $a$ and $n>3$. Prove that there are infintely many not fibonatic integers.

2019 Teodor Topan, 3

Let $ \left( c_n \right)_{n\ge 1} $ be a sequence of real numbers. Prove that the sequences $ \left( c_n\sin n \right)_{n\ge 1} ,\left( c_n\cos n \right)_{n\ge 1} $ are both convergent if and only if $ \left( c_n \right)_{n\ge 1} $ converges to $ 0. $ [i]Mihai Piticari[/i] and [i]Vladimir Cerbu[/i]

1973 Spain Mathematical Olympiad, 3

The sequence $(a_n)$ of complex numbers is considered in the complex plane, in which is: $$a_0 = 1, \,\,\, a_n = a_{n-1} +\frac{1}{n}(\cos 45^o + i \sin 45^o )^n.$$ Prove that the sequence of the real parts of the terms of $(a_n)$ is convergent and its limit is a number between $0.85$ and $1.15$.