Found problems: 1239
2000 District Olympiad (Hunedoara), 3
Let be two distinct natural numbers $ k_1 $ and $ k_2 $ and a sequence $ \left( x_n \right)_{n\ge 0} $ which satisfies
$$ x_nx_m +k_1k_2\le k_1x_n +k_2x_m,\quad\forall m,n\in\{ 0\}\cup\mathbb{N}. $$
Calculate $ \lim_{n\to\infty}\frac{n!\cdot (-1)^{1+n}\cdot x_n^2}{n^n} . $
Russian TST 2021, P3
Let $\mathcal{S}$ be a set consisting of $n \ge 3$ positive integers, none of which is a sum of two other distinct members of $\mathcal{S}$. Prove that the elements of $\mathcal{S}$ may be ordered as $a_1, a_2, \dots, a_n$ so that $a_i$ does not divide $a_{i - 1} + a_{i + 1}$ for all $i = 2, 3, \dots, n - 1$.
1996 Akdeniz University MO, 2
Let $u_1=1,u_2=1$ and for all $k \geq 1$'s
$$u_{k+2}=u_{k+1}+u_{k}$$
Prove that for all $m \geq 1$'s $5$ divides $u_{5m}$
2017 Korea National Olympiad, problem 4
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function as
\[ f(x) = \begin{cases} \frac{1}{x-1}& (x > 1)\\ 1& (x=1)\\ \frac{x}{1-x} & (x<1) \end{cases} \]
Let $x_1$ be a positive irrational number which is a zero of a quadratic polynomial with integer coefficients. For every positive integer $n$, let $x_{n+1} = f(x_n)$. Prove that there exists different positive integers $k$ and $\ell$ such that $x_k = x_\ell$.
2025 District Olympiad, P4
Let $(x_n)_{n\geq 1}$ be an increasing and unbounded sequence of positive integers such that $x_1=1$ and $x_{n+1}\leq 2x_n$ for all $n\geq 1$. Prove that every positive integer can be written as a finite sum of distinct terms of the sequence.
[i]Note:[/i] Two terms $x_i$ and $x_j$ of the sequence are considered distinct if $i\neq j$.
2019 Jozsef Wildt International Math Competition, W. 18
Let $\{c_k\}_{k\geq1}$ be a sequence with $0 \leq c_k \leq 1$, $c_1 \neq 0$, $\alpha > 1$. Let $C_n = c_1 + \cdots + c_n$. Prove $$\lim \limits_{n \to \infty}\frac{C_1^{\alpha}+\cdots+C_n^{\alpha}}{\left(C_1+\cdots +C_n\right)^{\alpha}}=0$$
2024 Francophone Mathematical Olympiad, 4
Find all integers $n \ge 2$ for which there exists $n$ integers $a_1,a_2,\dots,a_n \ge 2$ such that for all indices $i \ne j$, we have $a_i \mid a_j^2+1$.
1960 Putnam, B5
Define a sequence $(a_n)$ by $a_0 =0$ and $a_n = 1 +\sin(a_{n-1}-1)$ for $n\geq 1$. Evaluate
$$\lim_{n\to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k.$$
2022 China Girls Math Olympiad, 1
Consider all the real sequences $x_0,x_1,\cdots,x_{100}$ satisfying the following two requirements:
(1)$x_0=0$;
(2)For any integer $i,1\leq i\leq 100$,we have $1\leq x_i-x_{i-1}\leq 2$.
Find the greatest positive integer $k\leq 100$,so that for any sequence $x_0,x_1,\cdots,x_{100}$ like this,we have
\[x_k+x_{k+1}+\cdots+x_{100}\geq x_0+x_1+\cdots+x_{k-1}.\]
2024 TASIMO, 2
Find all positive integers $(r,s)$ such that there is a non-constant sequence $a_n$ os positive integers such that for all $n=1,2,\dots$
\[ a_{n+2}= \left(1+\frac{{a_2}^r}{{a_1}^s} \right ) \left(1+\frac{{a_3}^r}{{a_2}^s} \right ) \dots \left(1+\frac{{a_{n+1}}^r}{{a_n}^s} \right ).\]
Proposed by Navid Safaei, Iran
2021 Azerbaijan IMO TST, 1
Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$.
[i]South Africa [/i]
2002 Estonia National Olympiad, 5
The teacher writes numbers $1$ at both ends of the blackboard. The first student adds a $2$ in the middle between them, each next student adds the sum of each two adjacent numbers already on the blackboard between them (hence there are numbers $1, 3, 2, 3, 1$ on the blackboard after the second student, $1, 4, 3, 5, 2, 5, 3, 4, 1$ after the third student etc.) Find the sum of all numbers on the blackboard after the $n$-th student.
2001 China Team Selection Test, 3
Let $X$ be a finite set of real numbers. For any $x,x' \in X$ with $x<x'$, define a function $f(x,x')$, then $f$ is called an ordered pair function on $X$. For any given ordered pair function $f$ on $X$, if there exist elements $x_1 <x_2 <\cdots<x_k$ in $X$ such that $f(x_1 ,x_2 ) \le f(x_2 ,x_3 ) \le \cdots \le f(x_{k-1} ,x_k )$, then $x_1 ,x_2 ,\cdots,x_k$ is called an $f$-ascending sequence of length $k$ in $X$. Similarly, define an $f$-descending sequence of length $l$ in $X$. For integers $k,l \ge 3$, let $h(k,l)$ denote the smallest positive integer such that for any set $X$ of $s$ real numbers and any ordered pair function $f$ on $X$, there either exists an $f$-ascending sequence of length $k$ in $X$ or an $f$-descending sequence of length $l$ in $X$ if $s \ge h(k,l)$.
Prove:
1.For $k,l>3,h(k,l) \le h(k-1,l)+h(k,l-1)-1$;
2.$h(k,l) \le \binom{l-2}{k+l-4} +1$.
2007 Germany Team Selection Test, 1
We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by
\[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right),
\] where $\lfloor x\rfloor$ denotes the integer part of $x$.
[b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often.
[b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often.
[i]Proposed by Johan Meyer, South Africa[/i]
2022 Brazil EGMO TST, 5
For a given value $t$, we consider number sequences $a_1, a_2, a_3,...$ such that $a_{n+1} =\frac{a_n + t}{a_n + 1}$ for all $n \ge 1$.
(a) Suppose that $t = 2$. Determine all starting values $a_1 > 0$ such that $\frac43 \le a_n \le \frac32$ holds for all $n \ge 2$.
(b) Suppose that $t = -3$. Investigate whether $a_{2020} = a_1$ for all starting values $a_1$ different from $-1$ and $1$.
1980 Austrian-Polish Competition, 1
Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.
V Soros Olympiad 1998 - 99 (Russia), 11.9
The sequence of $a_n$ is determined by the relation
$$a_{n+1}=\frac{k+a_n}{1-a_n}$$
where $k > 0$. It is known that $a_{13} = a_1$. What values can $k$ take?
2008 China Team Selection Test, 2
The sequence $ \{x_{n}\}$ is defined by $ x_{1} \equal{} 2,x_{2} \equal{} 12$, and $ x_{n \plus{} 2} \equal{} 6x_{n \plus{} 1} \minus{} x_{n}$, $ (n \equal{} 1,2,\ldots)$. Let $ p$ be an odd prime number, let $ q$ be a prime divisor of $ x_{p}$. Prove that if $ q\neq2,3,$ then $ q\geq 2p \minus{} 1$.
2020 AMC 12/AHSME, 19
There exists a unique strictly increasing sequence of nonnegative integers $a_1 < a_2 < \dots < a_k$ such that \[\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_k}.\] What is $k?$
$\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306$
2018 Turkey MO (2nd Round), 3
A sequence $a_1,a_2,\dots$ satisfy
$$
\sum_{i =1}^n a_{\lfloor \frac{n}{i}\rfloor }=n^{10},
$$
for every $n\in\mathbb{N}$.
Let $c$ be a positive integer. Prove that, for every positive integer $n$,
$$
\frac{c^{a_n}-c^{a_{n-1}}}{n}
$$
is an integer.
1986 Miklós Schweitzer, 3
(a) Prove that for every natural number $k$, there are positive integers $a_1<a_2<\ldots <a_k$ such that $a_i-a_j$ divides $a_i$ for all $1\leq i, j\leq k, i\neq j$.
(b) Show that there is an absolute constant $C>0$ such that $a_1>k^{Ck}$ for every sequence $a_1,\ldots, a_k$ of numbers that satisfy the above divisibility condition.
[A. Balogh, I. Z. Ruzsa]
1989 Dutch Mathematical Olympiad, 1
For a sequence of integers $a_1,a_2,a_3,...$ with $0<a_1<a_2<a_3<...$ applies:
$$a_n=4a_{n-1}-a_{n-2} \,\,\, for \,\,\, n > 2$$
It is further given that $a_4 = 194$. Calculate $a_5$.
2025 AIME, 13
Let the sequence of rationals $x_1,x_2,\dots$ be defined such that $x_1=\frac{25}{11}$ and
\[x_{k+1}=\frac{1}{3}\left(x_k+\frac{1}{x_k}-1\right).\]
$x_{2025}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find the remainder when $m+n$ is divided by $1000$.
1997 Switzerland Team Selection Test, 1
1. A finite sequence of integers $a_0,a_1,...,a_n$ is called quadratic if $|a_k -a_{k-1}| = k^2$
for $n\geq k\geq1$.
(a) Prove that for any two integers $b$ and $c$, there exist a natural number $n$ and a quadratic sequence
with $a_0 = b$ and $a_n =c$.
(b) Find the smallest natural number $n$ for which there exists a quadratic sequence
with $a_0 = 0$ and $a_n = 1997$
2014 Contests, A3
$\boxed{A3}$The sequence $a_1,a_2,a_3,...$ is defined by $a_1=a_2=1,a_{2n+1}=2a_{2n}-a_n$ and $a_{2n+2}=2a_{2n+1}$ for $n\in{N}.$Prove that if $n>3$ and $n-3$ is divisible by $8$ then $a_n$ is divisible by $5$