This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2018 Saudi Arabia GMO TST, 1

Let $\{x_n\}$ be a sequence defined by $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$. Prove that $$1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}}$$ for all $n$

1988 Greece National Olympiad, 4

Let $a_1=5$ and $a_{n+1}= a^2_{n}-2$ for any $n=1,2,...$. a) Find $\lim_{n \rightarrow \infty}\frac{a_{n+1}}{a_1a_2 ...a_{n}}$ b) Find $\lim_{\nu \rightarrow \infty}\left(\frac{1}{a_1}+\frac{1}{a_1a_2}+...+\frac{1}{a_1a_2 ...a_{\nu}}\right)$

2013 Nordic, 3

Define a sequence ${(n_k)_{k\ge 0}}$ by ${n_{0 }= n_{1} = 1}$, and ${n_{2k} = n_k + n_{k-1} }$ and ${n_{2k+1} = n_k}$ for ${k \ge 1}$. Let further ${q_k = n_k }$ / ${ n_{k-1} }$ for each ${k \ge 1}$. Show that every positive rational number is present exactly once in the sequence ${(q_k)_{k\ge 1}}$

2016 IFYM, Sozopol, 4

$a$ and $b$ are fixed real numbers. With $x_n$ we denote the sum of the digits of $an+b$ in the decimal number system. Prove that the sequence $x_n$ contains an infinite constant subsequence.

2023 Brazil Team Selection Test, 2

Let $a > 1$ be a positive integer and $d > 1$ be a positive integer coprime to $a$. Let $x_1=1$, and for $k\geq 1$, define $$x_{k+1} = \begin{cases} x_k + d &\text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$ Find, in terms of $a$ and $d$, the greatest positive integer $n$ for which there exists an index $k$ such that $x_k$ is divisible by $a^n$.

1979 All Soviet Union Mathematical Olympiad, 273

For every $n$, the decreasing sequence $\{x_k\}$ satisfies a condition $$x_1+x_4/2+x_9/3+...+x_n^2/n \le 1$$ Prove that for every $n$, it also satisfies $$x_1+x_2/2+x_3/3+...+x_n/n\le 3$$

1999 Tournament Of Towns, 5

Tireless Thomas and Jeremy construct a sequence. At the beginning there is one positive integer in the sequence. Then they successively write new numbers in the sequence in the following way: Thomas obtains the next number by adding to the previous number one of its (decimal) digits, while Jeremy obtains the next number by subtracting from the previous number one of its digits. Prove that there is a number in this sequence which will be repeated at least $100$ times. (A Shapovalov)

2016 Greece Team Selection Test, 1

Given is the sequence $(a_n)_{n\geq 0}$ which is defined as follows:$a_0=3$ and $a_{n+1}-a_n=n(a_n-1) \ , \ \forall n\geq 0$. Determine all positive integers $m$ such that $\gcd (m,a_n)=1 \ , \ \forall n\geq 0$.

2017 Dutch IMO TST, 2

Tags: algebra , sequence
let $a_1,a_2,...a_n$ a sequence of real numbers such that $a_1+....+a_n=0$. define $b_i=a_1+a_2+....a_i$ for all $1 \leq i \leq n$ .suppose $b_i(a_{j+1}-a_{i+1}) \geq 0$ for all $1 \leq i \leq j \leq n-1$. Show that $$\max_{1 \leq l \leq n} |a_l| \geq \max_{1 \leq m \leq n} |b_m|$$

2010 IMO Shortlist, 7

Let $P_1, \ldots , P_s$ be arithmetic progressions of integers, the following conditions being satisfied: [b](i)[/b] each integer belongs to at least one of them; [b](ii)[/b] each progression contains a number which does not belong to other progressions. Denote by $n$ the least common multiple of the ratios of these progressions; let $n=p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ its prime factorization. Prove that \[s \geq 1 + \sum^k_{i=1} \alpha_i (p_i - 1).\] [i]Proposed by Dierk Schleicher, Germany[/i]

2020 Macedonia Additional BMO TST, 4

Prove that for all $n\in \mathbb{N}$ there exist natural numbers $a_1,a_2,...,a_n$ such that: $(i)a_1>a_2>...>a_n$ $(ii)a_i|a^2_{i+1},\forall i\in\{1,2,...,n-1\}$ $(iii)a_i\nmid a_j,\forall i,j\in \{1,2,...,n\},i\neq j$

1992 Poland - Second Round, 6

The sequences $(x_n)$ and $(y_n)$ are defined as follows: $$ x_{n+1} = \frac{x_n+2}{x_n+1},\quad y_{n+1}=\frac{y_n^2+2}{2y_n} \quad \text{ for } n= 0,1,2,\ldots.$$ Prove that for every integer $ n\geq 0 $ the equality $ y_n = x_{2^n-1} $ holds.

2000 Estonia National Olympiad, 4

Let us define the sequences $a_1, a_2, a_3,...$ and $b_1, b_2, b_3,...$. with the following conditions $a_1 = 3, b_1 = 1$ and $a_{n +1} =\frac{a_n^2+b_n^2}{2}$ and $b_{n + 1}= a_n \cdot b_n$ for each $n = 1, 2,...$. Find all different prime factors οf the number $a_{2000} + b_{2000}$.

2023 Indonesia TST, 1

Tags: algebra , sequence
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

2023 China MO, 1

Tags: algebra , sequence
Define the sequences $(a_n),(b_n)$ by \begin{align*} & a_n, b_n > 0, \forall n\in\mathbb{N_+} \\ & a_{n+1} = a_n - \frac{1}{1+\sum_{i=1}^n\frac{1}{a_i}} \\ & b_{n+1} = b_n + \frac{1}{1+\sum_{i=1}^n\frac{1}{b_i}} \end{align*} 1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1-b_1$; 2) If $a_{100} = b_{99}$, determine which is larger between $a_{100}+b_{100}$ and $a_{101}+b_{101}$.

2019 Taiwan TST Round 1, 5

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

2016 Saudi Arabia IMO TST, 1

Define the sequence $a_1, a_2,...$ as follows: $a_1 = 1$, and for every $n \ge 2$, $a_n = n - 2$ if $a_{n-1} = 0$ and $a_n = a_{n-1} - 1$, otherwise. Find the number of $1 \le k \le 2016$ such that there are non-negative integers $r, s$ and a positive integer $n$ satisfying $k = r + s$ and $a_{n+r} = a_n + s$.

2010 Korea Junior Math Olympiad, 4

Let there be a sequence $a_n$ such that $a_1 = 2,a_2 = 0, a_3 = 1, a_4 = 0$, and for $n \ge 1, a_{n+4}$ is the remainder when $a_n + 2a_{n+1} + 3a_{n+2} + 4a_{n+3}$ is divided by $9$. Prove that there are no positive integer $k$ such that $$a_k = 0, a_{k+1} = 1, a_{k+2} = 0,a_{k+3} = 2.$$

2000 Regional Competition For Advanced Students, 4

We consider the sequence $\{u_n\}$ defined by recursion $u_{n+1} =\frac{u_n(u_n + 1)}{n}$ for $n \ge 1$. (a) Determine the terms of the sequence for $u_1 = 1$. (b) Show that if a member of the sequence is rational, then all subsequent members are also rational numbers. (c) Show that for every natural number $K$ there is a $u_1 > 1$ such that the first $K$ terms of the sequence are natural numbers.

2018 India IMO Training Camp, 2

Tags: algebra , sequence
Let $n\ge 2$ be a natural number. Let $a_1\le a_2\le a_3\le \cdots \le a_n$ be real numbers such that $a_1+a_2+\cdots +a_n>0$ and $n(a_1^2+a_2^2+\cdots +a_n^2)=2(a_1+a_2+\cdots +a_n)^2.$ If $m=\lfloor n/2\rfloor+1$, the smallest integer larger than $n/2$, then show that $a_m>0.$

2019 Saudi Arabia Pre-TST + Training Tests, 3.3

Define sequence of positive integers $(a_n)$ as $a_1 = a$ and $a_{n+1} = a^2_n + 1$ for $n \ge 1$. Prove that there is no index $n$ for which $$\prod_{k=1}^{n} \left(a^2_k + a_k + 1\right)$$ is a perfect square.

1998 French Mathematical Olympiad, Problem 2

Tags: algebra , sequence
Let $(u_n)$ be a sequence of real numbers which satisfies $$u_{n+2}=|u_{n+1}|-u_n\qquad\text{for all }n\in\mathbb N.$$Prove that there exists a positive integer $p$ such that $u_n=u_{n+p}$ holds for all $n\in\mathbb N$.

1991 All Soviet Union Mathematical Olympiad, 551

A sequence of positive integers is constructed as follows. If the last digit of $a_n$ is greater than $5$, then $a_{n+1}$ is $9a_n$. If the last digit of $a_n$ is $5$ or less and an has more than one digit, then $a_{n+1}$ is obtained from $a_n$ by deleting the last digit. If $a_n$ has only one digit, which is $5$ or less, then the sequence terminates. Can we choose the first member of the sequence so that it does not terminate?

2017 Irish Math Olympiad, 5

Tags: algebra , sequence , sum
Given a positive integer $m$, a sequence of real numbers $a= (a_1,a_2,a_3,...)$ is called $m$-powerful if it satisfies $$(\sum_{k=1}^{n} a_k )^{m} = \sum_{k=1}^{n} a_k^{m}$$for all positive integers $n$. (a) Show that a sequence is $30$-powerful if and only if at most one of its terms is non-zero. (b) Find a sequence none of whose terms are zero but which is $2017$-powerful.

1967 IMO, 5

Let $a_1,\ldots,a_8$ be reals, not all equal to zero. Let \[ c_n = \sum^8_{k=1} a^n_k\] for $n=1,2,3,\ldots$. Given that among the numbers of the sequence $(c_n)$, there are infinitely many equal to zero, determine all the values of $n$ for which $c_n = 0.$