Found problems: 1239
1990 Bundeswettbewerb Mathematik, 2
The sequence $a_0,a_1,a_2,...$ is defined by $a_0 = 0, a_1 = a_2 = 1$ and $a_{n+2} +a_{n-1} = 2(a_{n+1} +a_n)$ for all $n \in N$. Show that all $a_n$ are perfect squares .
1988 IMO Shortlist, 24
Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that:
\[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0
\]
and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that:
\[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2}
\]
for all $ k \equal{} 1,2, \ldots$.
2020 Jozsef Wildt International Math Competition, W38
Let $(a_n)_{n\in\mathbb N}$ be a sequence, given by the recurrence:
$$ma_{n+1}+(m-2)a_n-a_{n-1}=0$$
where $m\in\mathbb R$ is a parameter and the first two terms of $a_n$ are fixed known real numbers. Find $m\in\mathbb R$, so that
$$\lim_{n\to\infty}a_n=0$$
[i]Proposed by Laurențiu Modan[/i]
1967 IMO Shortlist, 6
Given a segment $AB$ of the length 1, define the set $M$ of points in the
following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$
2011 Bogdan Stan, 3
Let be a sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ chosen such that the limit of the sequence $ \left(
x_{n+2011}-x_n \right)_{n\ge 1} $ exists. Calculate $ \lim_{n\to\infty } \frac{x_n}{n} . $
[i]Cosmin Nițu[/i]
2004 IMO Shortlist, 2
Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals.
Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded?
[i]Proposed by Mihai Bălună, Romania[/i]
2018 Latvia Baltic Way TST, P3
Let $a_1,a_2,...$ be an infinite sequence of integers that satisfies $a_{n+2}=a_{n+1}+a_n$ for all $n \ge 1$. There exists a positive integer $k$ such that $a_k=a_{k+2018}$. Prove that there exists a term of the sequence which is equal to zero.
1976 IMO Shortlist, 4
A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where [x] denotes the smallest integer $\leq$ x)$.$
1996 IMO Shortlist, 9
Let the sequence $ a(n), n \equal{} 1,2,3, \ldots$ be generated as follows with $ a(1) \equal{} 0,$ and for $ n > 1:$
\[ a(n) \equal{} a\left( \left \lfloor \frac{n}{2} \right \rfloor \right) \plus{} (\minus{}1)^{\frac{n(n\plus{}1)}{2}}.\]
1.) Determine the maximum and minimum value of $ a(n)$ over $ n \leq 1996$ and find all $ n \leq 1996$ for which these extreme values are attained.
2.) How many terms $ a(n), n \leq 1996,$ are equal to 0?
1999 Mongolian Mathematical Olympiad, Problem 3
Let $(a_n)^\infty_{n=1}$ be a non-decreasing sequence of natural numbers with $a_{20}=100$. A sequence $(b_n)$ is defined by $b_m=\min\{n|an\ge m\}$. Find the maximum value of $a_1+a_2+\ldots+a_{20}+b_1+b_2+\ldots+b_{100}$ over all such sequences $(a_n)$.
2008 VJIMC, Problem 2
Find all functions $f:(0,\infty)\to(0,\infty)$ such that
$$f(f(f(x)))+4f(f(x))+f(x)=6x.$$
2010 Saudi Arabia IMO TST, 2
a) Prove that for each positive integer $n$ there is a unique positive integer $a_n$ such that $$(1 + \sqrt5)^n =\sqrt{a_n} + \sqrt{a_n+4^n} . $$
b) Prove that $a_{2010}$ is divisible by $5\cdot 4^{2009}$ and find the quotient
2013 IMAR Test, 2
For every non-negative integer $n$ , let $s_n$ be the sum of digits in the decimal expansion of $2^n$. Is the sequence $(s_n)_{n \in \mathbb{N}}$ eventually increasing ?
2001 China Team Selection Test, 3
Let $X$ be a finite set of real numbers. For any $x,x' \in X$ with $x<x'$, define a function $f(x,x')$, then $f$ is called an ordered pair function on $X$. For any given ordered pair function $f$ on $X$, if there exist elements $x_1 <x_2 <\cdots<x_k$ in $X$ such that $f(x_1 ,x_2 ) \le f(x_2 ,x_3 ) \le \cdots \le f(x_{k-1} ,x_k )$, then $x_1 ,x_2 ,\cdots,x_k$ is called an $f$-ascending sequence of length $k$ in $X$. Similarly, define an $f$-descending sequence of length $l$ in $X$. For integers $k,l \ge 3$, let $h(k,l)$ denote the smallest positive integer such that for any set $X$ of $s$ real numbers and any ordered pair function $f$ on $X$, there either exists an $f$-ascending sequence of length $k$ in $X$ or an $f$-descending sequence of length $l$ in $X$ if $s \ge h(k,l)$.
Prove:
1.For $k,l>3,h(k,l) \le h(k-1,l)+h(k,l-1)-1$;
2.$h(k,l) \le \binom{l-2}{k+l-4} +1$.
2024 Middle European Mathematical Olympiad, 1
Let $\mathbb{N}_0$ denote the set of non-negative integers. Determine all non-negative integers $k$ for which there exists a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ such that $f(2024) = k$ and $f(f(n)) \leq f(n+1) - f(n)$ for all non-negative integers $n$.
2001 Mongolian Mathematical Olympiad, Problem 1
Suppose that a sequence $x_1,x_2,\ldots,x_{2001}$ of positive real numbers satisfies
$$3x^2_{n+1}=7x_nx_{n+1}-3x_{n+1}-2x^2_n+x_n\enspace\text{ and }\enspace x_{37}=x_{2001}.$$Find the maximum possible value of $x_1$.
2012 India IMO Training Camp, 1
Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\]
[i]Proposed by Warut Suksompong, Thailand[/i]
2013 BMT Spring, 5
Suppose that $c_n=(-1)^n(n+1)$. While the sum $\sum_{n=0}^\infty c_n$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, $a_n$, is $\operatorname{Abel}(a_n)=\lim_{x\to1^-}\sum_{n=0}^\infty a_nx^n$. Find $\operatorname{Abel}(c_n)$.
2022 Korea National Olympiad, 7
Suppose that the sequence $\{a_n\}$ of positive reals satisfies the following conditions:
[list]
[*]$a_i \leq a_j$ for every positive integers $i <j$.
[*]For any positive integer $k \geq 3$, the following inequality holds:
$$(a_1+a_2)(a_2+a_3)\cdots(a_{k-1}+a_k)(a_k+a_1)\leq (2^k+2022)a_1a_2\cdots a_k$$
[/list]
Prove that $\{a_n\}$ is constant.
2020 Thailand TSTST, 5
Let $\{a_n\}$ be a sequence of positive integers such that $a_{n+1} = a_n^2+1$ for all $n \geq 1$. Prove that there is no positive integer $N$ such that $$\prod_{k=1}^N(a_k^2+a_k+1)$$ is a perfect square.
Russian TST 2019, P1
Let $a_0, a_1, \ldots , a_n$ and $b_0, b_1, \ldots , b_n$ be sequences of real numbers such that $a_0 = b_0 \geqslant 0$, $a_n = b_n > 0$ and \[a_i=\sqrt{\frac{a_{i+1}+a_{i-1}}{2}},\quad b_i=\sqrt{\frac{b_{i+1}+b_{i-1}}{2}},\]for all $i=1,\ldots,n-1$. Prove that $a_1 = b_1$.
1981 Czech and Slovak Olympiad III A, 4
Let $n$ be a positive integer. Show that there is a prime $p$ and a sequence $\left(a_k\right)_{k\ge1}$ of positive integers such that the sequence $\left(p+na_k\right)_{k\ge1}$ consists of distinct primes.
2021 Dutch IMO TST, 1
The sequence of positive integers $a_0, a_1, a_2, . . .$ is defined by $a_0 = 3$ and $$a_{n+1} - a_n = n(a_n - 1)$$ for all $n \ge 0$. Determine all integers $m \ge 2$ for which $gcd (m, a_n) = 1$ for all $n \ge 0$.
2011 Laurențiu Duican, 4
[b]a)[/b] Provide an example of a sequence $ \left( a_n \right)_{n\ge 1} $ of positive real numbers whose series converges, and has the property that each member (sequence) of the family of sequences $ \left(\left( n^{\alpha } a_n \right)_{n\ge 1}\right)_{\alpha >0} $ is unbounded.
[b]b)[/b] Let $ \left( b_n \right)_{n\ge 1} $ be a sequence of positive real numbers, having the property that
$$ nb_{n+1}\leqslant b_1+b_2+\cdots +b_n, $$
for any natural number $ n. $ Prove that the following relations are equivalent:
$\text{(i)} $ there exists a convergent member (series) of the family of series $ \left( \sum_{i=1}^{\infty } b_i^{\beta } \right)_{\beta >0} $
$ \text{(ii)} $ there exists a member (sequence) of the family of sequences $ \left(\left( n^{\beta } b_n \right)_{n\ge 1}\right)_{\beta >0} $ that is convergent to $ 0. $
[i]Eugen Păltănea[/i]
2017 Grand Duchy of Lithuania, 1
The infinite sequence $a_0, a_1, a_2, a_3,... $ is defined by $a_0 = 2$ and
$$a_n =\frac{2a_{n-1} + 1}{a_{n-1} + 2}$$ , $n = 1, 2, 3, ...$ Prove that $1 < a_n < 1 + \frac{1}{3^n}$ for all $n = 1, 2, 3, . .$