This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

1990 Bundeswettbewerb Mathematik, 2

The sequence $a_0,a_1,a_2,...$ is defined by $a_0 = 0, a_1 = a_2 = 1$ and $a_{n+2} +a_{n-1} = 2(a_{n+1} +a_n)$ for all $n \in N$. Show that all $a_n$ are perfect squares .

1988 IMO Shortlist, 24

Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that: \[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0 \] and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that: \[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2} \] for all $ k \equal{} 1,2, \ldots$.

2020 Jozsef Wildt International Math Competition, W38

Let $(a_n)_{n\in\mathbb N}$ be a sequence, given by the recurrence: $$ma_{n+1}+(m-2)a_n-a_{n-1}=0$$ where $m\in\mathbb R$ is a parameter and the first two terms of $a_n$ are fixed known real numbers. Find $m\in\mathbb R$, so that $$\lim_{n\to\infty}a_n=0$$ [i]Proposed by Laurențiu Modan[/i]

1967 IMO Shortlist, 6

Given a segment $AB$ of the length 1, define the set $M$ of points in the following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$

2011 Bogdan Stan, 3

Let be a sequence of real numbers $ \left( x_n \right)_{n\ge 1} $ chosen such that the limit of the sequence $ \left( x_{n+2011}-x_n \right)_{n\ge 1} $ exists. Calculate $ \lim_{n\to\infty } \frac{x_n}{n} . $ [i]Cosmin Nițu[/i]

2004 IMO Shortlist, 2

Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals. Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded? [i]Proposed by Mihai Bălună, Romania[/i]

2018 Latvia Baltic Way TST, P3

Tags: algebra , sequence
Let $a_1,a_2,...$ be an infinite sequence of integers that satisfies $a_{n+2}=a_{n+1}+a_n$ for all $n \ge 1$. There exists a positive integer $k$ such that $a_k=a_{k+2018}$. Prove that there exists a term of the sequence which is equal to zero.

1976 IMO Shortlist, 4

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where [x] denotes the smallest integer $\leq$ x)$.$

1996 IMO Shortlist, 9

Let the sequence $ a(n), n \equal{} 1,2,3, \ldots$ be generated as follows with $ a(1) \equal{} 0,$ and for $ n > 1:$ \[ a(n) \equal{} a\left( \left \lfloor \frac{n}{2} \right \rfloor \right) \plus{} (\minus{}1)^{\frac{n(n\plus{}1)}{2}}.\] 1.) Determine the maximum and minimum value of $ a(n)$ over $ n \leq 1996$ and find all $ n \leq 1996$ for which these extreme values are attained. 2.) How many terms $ a(n), n \leq 1996,$ are equal to 0?

1999 Mongolian Mathematical Olympiad, Problem 3

Let $(a_n)^\infty_{n=1}$ be a non-decreasing sequence of natural numbers with $a_{20}=100$. A sequence $(b_n)$ is defined by $b_m=\min\{n|an\ge m\}$. Find the maximum value of $a_1+a_2+\ldots+a_{20}+b_1+b_2+\ldots+b_{100}$ over all such sequences $(a_n)$.

2008 VJIMC, Problem 2

Find all functions $f:(0,\infty)\to(0,\infty)$ such that $$f(f(f(x)))+4f(f(x))+f(x)=6x.$$

2010 Saudi Arabia IMO TST, 2

a) Prove that for each positive integer $n$ there is a unique positive integer $a_n$ such that $$(1 + \sqrt5)^n =\sqrt{a_n} + \sqrt{a_n+4^n} . $$ b) Prove that $a_{2010}$ is divisible by $5\cdot 4^{2009}$ and find the quotient

2013 IMAR Test, 2

For every non-negative integer $n$ , let $s_n$ be the sum of digits in the decimal expansion of $2^n$. Is the sequence $(s_n)_{n \in \mathbb{N}}$ eventually increasing ?

2001 China Team Selection Test, 3

Let $X$ be a finite set of real numbers. For any $x,x' \in X$ with $x<x'$, define a function $f(x,x')$, then $f$ is called an ordered pair function on $X$. For any given ordered pair function $f$ on $X$, if there exist elements $x_1 <x_2 <\cdots<x_k$ in $X$ such that $f(x_1 ,x_2 ) \le f(x_2 ,x_3 ) \le \cdots \le f(x_{k-1} ,x_k )$, then $x_1 ,x_2 ,\cdots,x_k$ is called an $f$-ascending sequence of length $k$ in $X$. Similarly, define an $f$-descending sequence of length $l$ in $X$. For integers $k,l \ge 3$, let $h(k,l)$ denote the smallest positive integer such that for any set $X$ of $s$ real numbers and any ordered pair function $f$ on $X$, there either exists an $f$-ascending sequence of length $k$ in $X$ or an $f$-descending sequence of length $l$ in $X$ if $s \ge h(k,l)$. Prove: 1.For $k,l>3,h(k,l) \le h(k-1,l)+h(k,l-1)-1$; 2.$h(k,l) \le \binom{l-2}{k+l-4} +1$.

2024 Middle European Mathematical Olympiad, 1

Let $\mathbb{N}_0$ denote the set of non-negative integers. Determine all non-negative integers $k$ for which there exists a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ such that $f(2024) = k$ and $f(f(n)) \leq f(n+1) - f(n)$ for all non-negative integers $n$.

2001 Mongolian Mathematical Olympiad, Problem 1

Suppose that a sequence $x_1,x_2,\ldots,x_{2001}$ of positive real numbers satisfies $$3x^2_{n+1}=7x_nx_{n+1}-3x_{n+1}-2x^2_n+x_n\enspace\text{ and }\enspace x_{37}=x_{2001}.$$Find the maximum possible value of $x_1$.

2012 India IMO Training Camp, 1

Determine all sequences $(x_1,x_2,\ldots,x_{2011})$ of positive integers, such that for every positive integer $n$ there exists an integer $a$ with \[\sum^{2011}_{j=1} j x^n_j = a^{n+1} + 1\] [i]Proposed by Warut Suksompong, Thailand[/i]

2013 BMT Spring, 5

Suppose that $c_n=(-1)^n(n+1)$. While the sum $\sum_{n=0}^\infty c_n$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, $a_n$, is $\operatorname{Abel}(a_n)=\lim_{x\to1^-}\sum_{n=0}^\infty a_nx^n$. Find $\operatorname{Abel}(c_n)$.

2022 Korea National Olympiad, 7

Suppose that the sequence $\{a_n\}$ of positive reals satisfies the following conditions: [list] [*]$a_i \leq a_j$ for every positive integers $i <j$. [*]For any positive integer $k \geq 3$, the following inequality holds: $$(a_1+a_2)(a_2+a_3)\cdots(a_{k-1}+a_k)(a_k+a_1)\leq (2^k+2022)a_1a_2\cdots a_k$$ [/list] Prove that $\{a_n\}$ is constant.

2020 Thailand TSTST, 5

Let $\{a_n\}$ be a sequence of positive integers such that $a_{n+1} = a_n^2+1$ for all $n \geq 1$. Prove that there is no positive integer $N$ such that $$\prod_{k=1}^N(a_k^2+a_k+1)$$ is a perfect square.

Russian TST 2019, P1

Tags: sequence , algebra
Let $a_0, a_1, \ldots , a_n$ and $b_0, b_1, \ldots , b_n$ be sequences of real numbers such that $a_0 = b_0 \geqslant 0$, $a_n = b_n > 0$ and \[a_i=\sqrt{\frac{a_{i+1}+a_{i-1}}{2}},\quad b_i=\sqrt{\frac{b_{i+1}+b_{i-1}}{2}},\]for all $i=1,\ldots,n-1$. Prove that $a_1 = b_1$.

1981 Czech and Slovak Olympiad III A, 4

Let $n$ be a positive integer. Show that there is a prime $p$ and a sequence $\left(a_k\right)_{k\ge1}$ of positive integers such that the sequence $\left(p+na_k\right)_{k\ge1}$ consists of distinct primes.

2021 Dutch IMO TST, 1

The sequence of positive integers $a_0, a_1, a_2, . . .$ is defined by $a_0 = 3$ and $$a_{n+1} - a_n = n(a_n - 1)$$ for all $n \ge 0$. Determine all integers $m \ge 2$ for which $gcd (m, a_n) = 1$ for all $n \ge 0$.

2011 Laurențiu Duican, 4

[b]a)[/b] Provide an example of a sequence $ \left( a_n \right)_{n\ge 1} $ of positive real numbers whose series converges, and has the property that each member (sequence) of the family of sequences $ \left(\left( n^{\alpha } a_n \right)_{n\ge 1}\right)_{\alpha >0} $ is unbounded. [b]b)[/b] Let $ \left( b_n \right)_{n\ge 1} $ be a sequence of positive real numbers, having the property that $$ nb_{n+1}\leqslant b_1+b_2+\cdots +b_n, $$ for any natural number $ n. $ Prove that the following relations are equivalent: $\text{(i)} $ there exists a convergent member (series) of the family of series $ \left( \sum_{i=1}^{\infty } b_i^{\beta } \right)_{\beta >0} $ $ \text{(ii)} $ there exists a member (sequence) of the family of sequences $ \left(\left( n^{\beta } b_n \right)_{n\ge 1}\right)_{\beta >0} $ that is convergent to $ 0. $ [i]Eugen Păltănea[/i]

2017 Grand Duchy of Lithuania, 1

The infinite sequence $a_0, a_1, a_2, a_3,... $ is defined by $a_0 = 2$ and $$a_n =\frac{2a_{n-1} + 1}{a_{n-1} + 2}$$ , $n = 1, 2, 3, ...$ Prove that $1 < a_n < 1 + \frac{1}{3^n}$ for all $n = 1, 2, 3, . .$