This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2007 Gheorghe Vranceanu, 3

Given a function $ f:\mathbb{N}\longrightarrow\mathbb{N} , $ find the necessary and sufficient condition that makes the sequence $$ \left(\left( 1+\frac{(-1)^{f(n)}}{n+1} \right)^{(-1)^{-f(n+1)}\cdot(n+2)}\right)_{n\ge 1} $$ to be monotone.

2016 Taiwan TST Round 3, 2

Let $k$ be a positive integer. A sequence $a_0,a_1,...,a_n,n>0$ of positive integers satisfies the following conditions: $(i)$ $a_0=a_n=1$; $(ii)$ $2\leq a_i\leq k$ for each $i=1,2,...,n-1$; $(iii)$For each $j=2,3,...,k$, the number $j$ appears $\phi(j)$ times in the sequence $a_0,a_1,...,a_n$, where $\phi(j)$ is the number of positive integers that do not exceed $j$ and are coprime to $j$; $(iv)$For any $i=1,2,...,n-1$, $\gcd(a_i,a_{i-1})=1=\gcd(a_i,a_{i+1})$, and $a_i$ divides $a_{i-1}+a_{i+1}$. Suppose there is another sequence $b_0,b_1,...,b_n$ of integers such that $\frac{b_{i+1}}{a_{i+1}}>\frac{b_i}{a_i}$ for all $i=0,1,...,n-1$. Find the minimum value of $b_n-b_0$.

2004 Germany Team Selection Test, 1

Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$. (1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded? (2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$? Justify your answer.

2016 Thailand TSTST, 1

Let $a_1, a_2, a_3, \dots$ be a sequence of integers such that $\text{(i)}$ $a_1=0$ $\text{(ii)}$ for all $i\geq 1$, $a_{i+1}=a_i+1$ or $-a_i-1$. Prove that $\frac{a_1+a_2+\cdots+a_n}{n}\geq-\frac{1}{2}$ for all $n\geq 1$.

1994 French Mathematical Olympiad, Problem 1

Tags: sequence , algebra
For each positive integer $n$, let $I_n$ denote the number of integers $p$ for which $50^n<7^p<50^{n+1}$. (a) Prove that, for each $n$, $I_n$ is either $2$ or $3$. (b) Prove that $I_n=3$ for infinitely many $n\in\mathbb N$, and find at least one such $n$.

1975 Kurschak Competition, 3

Let $$x_0 = 5\,\, ,\, \,\,x_{n+1} = x_n +\frac{1}{x_n}.$$ Prove that $45 < x_{1000} < 45.1$.

2011 IFYM, Sozopol, 5

Does there exist a strictly increasing sequence $\{a_n\}_{n=1}^\infty$ of natural numbers with the following property: for $\forall$ $c\in \mathbb{Z}$ the sequence $c+a_1,c+a_2,...,c+a_n...$ has finite number of primes? Explain your answer.

2007 Mathematics for Its Sake, 2

Let $ \left( a_n \right)_{n\ge 1} $ be an arithmetic progression of positive real numbers, and $ m $ be a natural number. Calculate: [b]a)[/b] $ \lim_{n\to\infty } \frac{1}{n^{2m+2}} \sum_{1\le i<j\le n} a_i^ma_j^m $ [b]b)[/b] $ \lim_{n\to\infty } \frac{1}{a_n^{2m+2}} \sum_{1\le i<j\le n} a_i^ma_j^m $ [i]Dumitru Acu[/i]

2017 Hanoi Open Mathematics Competitions, 10

Consider all words constituted by eight letters from $\{C ,H,M, O\}$. We arrange the words in an alphabet sequence. Precisely, the first word is $CCCCCCCC$, the second one is $CCCCCCCH$, the third is $CCCCCCCM$, the fourth one is $CCCCCCCO, ...,$ and the last word is $OOOOOOOO$. a) Determine the $2017$th word of the sequence? b) What is the position of the word $HOMCHOMC$ in the sequence?

2020 LIMIT Category 2, 20

Let $\{a_n \}_n$ be a sequence of real numbers such there there are countably infinite distinct subsequences converging to the same point. We call two subsequences distinct if they do not have a common term. Which of the following statements always holds: (A) $\{a_n \}_n$ is bounded (B) $\{a_n \}_n$ is unbounded (C) The set of convergent subsequence $\{a_n \}_n$ is countable (D) None of these

2007 India IMO Training Camp, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

1988 IMO Longlists, 1

An integer sequence is defined by \[{ a_n = 2 a_{n-1} + a_{n-2}}, \quad (n > 1), \quad a_0 = 0, a_1 = 1.\] Prove that $2^k$ divides $a_n$ if and only if $2^k$ divides $n$.

2019 IMO Shortlist, A3

Tags: sequence , algebra
Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of \[ \left|1-\sum_{i \in X} a_{i}\right| \] is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that \[ \sum_{i \in X} b_{i}=1. \]

1962 Dutch Mathematical Olympiad, 2

The $n^{th}$ term of a sequence is $t_n$. For $n \ge 1$, $t_n$ is given by the relation: $$t_n= n^3+\frac12 n^2+ \frac13 n + \frac14$$ The $n^{th}$ term of a second sequence $T_n$, where $T_n$ represents the smallest integer greater than $t_n$. Calculate: $$(T_1+T_2+...+T_{1014}) -(t_1+t_2+...+t_{1014}) $$

2018 Kazakhstan National Olympiad, 2

The natural number $m\geq 2$ is given.Sequence of natural numbers $(b_0,b_1,\ldots,b_m)$ is called concave if $b_k+b_{k-2}\le2b_{k-1}$ for all $2\le k\le m.$ Prove that there exist not greater than $2^m$ concave sequences starting with $b_0 =1$ or $b_0 =2$

1997 Akdeniz University MO, 3

$(x_n)$ be a sequence with $x_1=0$, $$x_{n+1}=5x_n + \sqrt{24x_n^2+1}$$. Prove that for $k \geq 2$ $x_k$ is a natural number.

1999 Belarusian National Olympiad, 3

Tags: sequence , algebra
A sequence of numbers $a_1,a_2,...,a_{1999}$ is given. In each move it is allowed to choose two of the numbers, say $a_m,a_n$, and replace them by the numbers $$\frac{a_n^2}{a_m^2}-\frac{n}{m}\left(\frac{a_m^2}{a_n}-a_m\right), \frac{a_m^2}{a_n^2}-\frac{m}{n}\left(\frac{a_n^2}{a_m}-a_n\right) $$ respectively. Starting with the sequence $a_i = 1$ for $20 \nmid i$ and $a_i =\frac{1}{5}$ for $20 \mid i$, is it possible to obtain a sequence whose all terms are integers?

1988 IMO Shortlist, 28

The sequence $ \{a_n\}$ of integers is defined by \[ a_1 \equal{} 2, a_2 \equal{} 7 \] and \[ \minus{} \frac {1}{2} < a_{n \plus{} 1} \minus{} \frac {a^2_n}{a_{n \minus{} 1}} \leq \frac {}{}, n \geq 2. \] Prove that $ a_n$ is odd for all $ n > 1.$

1992 French Mathematical Olympiad, Problem 4

Given $u_0,u_1$ with $0<u_0,u_1<1$, define the sequence $(u_n)$ recurrently by the formula $$u_{n+2}=\frac12\left(\sqrt{u_{n+1}}+\sqrt{u_n}\right).$$(a) Prove that the sequence $u_n$ is convergent and find its limit. (b) Prove that, starting from some index $n_0$, the sequence $u_n$ is monotonous.

2022 Romania Team Selection Test, 2

Fix a nonnegative integer $a_0$ to define a sequence of integers $a_0,a_1,\ldots$ by letting $a_k,k\geq 1$ be the smallest integer (strictly) greater than $a_{k-1}$ making $a_{k-1}+a_k{}$ into a perfect square. Let $S{}$ be the set of positive integers not expressible as the difference of two terms of the sequence $(a_k)_{k\geq 0}.$ Prove that $S$ is finite and determine its size in terms of $a_0.$

2025 SEEMOUS, P4

Let $(a_n)_{n\geq 1}$ be a monotone decreasing sequence of real numbers that converges to $0$. Prove that $\sum_{n=1}^{\infty}\frac{a_n}{n}$ is convergent if and only if the sequence $(a_n\ln n)_{n\geq 1}$ is bounded and $\sum_{n=1}^{\infty} (a_n-a_{n+1})\ln n$ is convergent.

1979 Bundeswettbewerb Mathematik, 4

An infinite sequence $p_1, p_2, p_3, \ldots$ of natural numbers in the decimal system has the following property: For every $i \in \mathbb{N}$ the last digit of $p_{i+1}$ is different from $9$, and by omitting this digit one obtains number $p_i$. Prove that this sequence contains infinitely many composite numbers.

2011 Peru IMO TST, 6

Tags: sequence , algebra
Let $a_1, a_2, \cdots , a_n$ be real numbers, with $n\geq 3,$ such that $a_1 + a_2 +\cdots +a_n = 0$ and $$ 2a_k\leq a_{k-1} + a_{k+1} \ \ \ \text{for} \ \ \ k = 2, 3, \cdots , n-1.$$ Find the least number $\lambda(n),$ such that for all $k\in \{ 1, 2, \cdots, n\} $ it is satisfied that $|a_k|\leq \lambda (n)\cdot \max \{|a_1|, |a_n|\} .$

2024 Moldova EGMO TST, 12

Tags: sequence
Consider the sequence $(x_n)_{n\in\mathbb{N^*}}$ such that $$x_0=0,\quad x_1=2024,\quad x_n=x_{n-1}+x_{n-2}, \forall n\geq2.$$ Prove that there is an infinity of terms in this sequence that end with $2024.$

2017 Azerbaijan Team Selection Test, 1

Consider the sequence of rational numbers defined by $x_1=\frac{4}{3}$, and $x_{n+1}=\frac{x_n^2}{x_n^2-x_n+1}$. Show that the nu,erator of the lowest term expression of each sum $x_1+x_2+...+x_k$ is a perfect square.