Found problems: 295
2015 Indonesia MO Shortlist, N6
Defined as $N_0$ as the set of all non-negative integers. Set $S \subset N_0$ with not so many elements is called beautiful if for every $a, b \in S$ with $a \ge b$ ($a$ and $b$ do not have to be different), exactly one of $a + b$ or $a - b$ is in $S$. Set $T \subset N_0$ with not so many elements is called charming if the largest number $k$ such that up to 3$^k | a$ is the same for each element $a \in T$. Prove that each beautiful set must be charming.
2017 Bosnia And Herzegovina - Regional Olympiad, 3
Let $S$ be a set of $6$ positive real numbers such that
$\left(a,b \in S \right) \left(a>b \right) \Rightarrow a+b \in S$ or $a-b \in S$
Prove that if we sort these numbers in ascending order, then they form an arithmetic progression
2001 Moldova National Olympiad, Problem 7
Let $n$ be a positive integer. We denote by $S$ the sum of elements of the set $M=\{x\in\mathbb N|(n-1)^2\le x<(n+1)^2\}$.
(a) Show that $S$ is divisible by $6$.
(b) Find all $n\in\mathbb N$ for which $S+(1-n)(1+n)=2001$.
2019 Switzerland Team Selection Test, 3
Given any set $S$ of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
2021 Switzerland - Final Round, 3
Find all finite sets $S$ of positive integers with at least $2$ elements, such that if $m>n$ are two elements of $S$, then
$$ \frac{n^2}{m-n} $$
is also an element of $S$.
2015 Ukraine Team Selection Test, 7
Let $A$ and $B$ be two sets of real numbers. Suppose that the elements of the set $AB = \{ab: a\in A, b\in B\}$ form a finite arithmetic progression. Prove that one of these sets contains no more than three elements
2008 Bulgarian Autumn Math Competition, Problem 12.4
Veni writes down finitely many real numbers (possibly one), squares them, and then subtracts 1 from each of them and gets the same set of numbers as in the beginning. What were the starting numbers?
2021 Junior Balkan Team Selection Tests - Romania, P4
Let $M$ be a set of $13$ positive integers with the property that $\forall \ m\in M, \ 100\leq m\leq 999$. Prove that there exists a subset $S\subset M$ and a combination of arithmetic operations (addition, subtraction, multiplication, division – without using parentheses) between the elements of $S$, such that the value of the resulting expression is a rational number in the interval $(3,4)$.
2017 China Team Selection Test, 3
Let $X$ be a set of $100$ elements. Find the smallest possible $n$ satisfying the following condition: Given a sequence of $n$ subsets of $X$, $A_1,A_2,\ldots,A_n$, there exists $1 \leq i < j < k \leq n$ such that
$$A_i \subseteq A_j \subseteq A_k \text{ or } A_i \supseteq A_j \supseteq A_k.$$
1997 Estonia Team Selection Test, 1
$(a)$ Is it possible to partition the segment $[0,1]$ into two sets $A$ and $B$ and to define a continuous function $f$ such that for every $x\in A \ f(x)$ is in $B$, and for every $x\in B \ f(x)$ is in $A$?
$(b)$ The same question with $[0,1]$ replaced by $[0,1).$
Russian TST 2016, P2
A family of sets $F$ is called perfect if the following condition holds: For every triple of sets $X_1, X_2, X_3\in F$, at least one of the sets $$ (X_1\setminus X_2)\cap X_3,$$ $$(X_2\setminus X_1)\cap X_3$$ is empty. Show that if $F$ is a perfect family consisting of some subsets of a given finite set $U$, then $\left\lvert F\right\rvert\le\left\lvert U\right\rvert+1$.
[i]Proposed by Michał Pilipczuk[/i]
2000 Saint Petersburg Mathematical Olympiad, 11.7
It is known that for irrational numbers $\alpha$, $\beta$, $\gamma$, $\delta$ and for any positive integer $n$ the following is true:
$$[n\alpha]+[n\beta]=[n\gamma]+[n\delta]$$
Does this mean that sets $\{\alpha,\beta\}$ and $\{\gamma,\delta\}$ are equal? (As usual $[x]$ means the greatest integer not greater than $x$).
2015 USAMO, 6
Consider $0<\lambda<1$, and let $A$ be a multiset of positive integers. Let $A_n=\{a\in A: a\leq n\}$. Assume that for every $n\in\mathbb{N}$, the set $A_n$ contains at most $n\lambda$ numbers. Show that there are infinitely many $n\in\mathbb{N}$ for which the sum of the elements in $A_n$ is at most $\frac{n(n+1)}{2}\lambda$. (A multiset is a set-like collection of elements in which order is ignored, but repetition of elements is allowed and multiplicity of elements is significant. For example, multisets $\{1, 2, 3\}$ and $\{2, 1, 3\}$ are equivalent, but $\{1, 1, 2, 3\}$ and $\{1, 2, 3\}$ differ.)
2021 Romania Team Selection Test, 1
Let $k>1$ be a positive integer. A set $S{}$ is called [i]good[/i] if there exists a colouring of the positive integers with $k{}$ colours, such that no element from $S{}$ can be written as the sum of two distinct positive integers having the same colour. Find the greatest positive integer $t{}$ (in terms of $k{}$) for which the set \[S=\{a+1,a+2,\ldots,a+t\}\]is good, for any positive integer $a{}$.
2009 Serbia National Math Olympiad, 3
Determine the largest positive integer $n$ for which there exist pairwise different sets $\mathbb{S}_1 , ..., \mathbb{S}_n$ with the following properties:
$1$) $|\mathbb{S}_i \cup \mathbb{S}_j | \leq 2004$ for any two indices $1 \leq i, j\leq n$, and
$2$) $\mathbb{S}_i \cup \mathbb{S}_j \cup \mathbb{S}_k = \{ 1,2,...,2008 \}$ for any $1 \leq i < j < k \leq n$
[i]Proposed by Ivan Matic[/i]
2014 Korea Junior Math Olympiad, 8
Let there be $n$ students and $m$ clubs. The students joined the clubs so that the following is true:
- For all students $x$, you can choose some clubs such that $x$ is the only student who joined all of the chosen clubs.
Let the number of clubs each student joined be $a_1,a_2,...,a_m$. Prove that
$$a_1!(m - a_1)! + a_2!(m - a_2)! + ... + a_n!(m -a_n)! \le m!$$
2022 3rd Memorial "Aleksandar Blazhevski-Cane", P4
Find all positive integers $n$ such that the set $S=\{1,2,3, \dots 2n\}$ can be divided into $2$ disjoint subsets $S_1$ and $S_2$, i.e. $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = S$, such that each one of them has $n$ elements, and the sum of the elements of $S_1$ is divisible by the sum of the elements in $S_2$.
[i]Proposed by Viktor Simjanoski[/i]
2022 European Mathematical Cup, 4
A collection $F$ of distinct (not necessarily non-empty) subsets of $X = \{1,2,\ldots,300\}$ is [i]lovely[/i] if for any three (not necessarily distinct) sets $A$, $B$ and $C$ in $F$ at most three out of the following eight sets are non-empty
\begin{align*}A \cap B \cap C, \ \ \ \overline{A} \cap B \cap C, \ \ \ A \cap \overline{B} \cap C, \ \ \ A \cap B \cap \overline{C}, \\ \overline{A} \cap \overline{B} \cap C, \ \ \ \overline{A} \cap B \cap \overline {C}, \ \ \ A \cap \overline{B} \cap \overline{C}, \ \ \ \overline{A} \cap \overline{B} \cap \overline{C}
\end{align*}
where $\overline{S}$ denotes the set of all elements of $X$ which are not in $S$.
What is the greatest possible number of sets in a lovely collection?
2019 India IMO Training Camp, P1
Given any set $S$ of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
2017 Romanian Master of Mathematics Shortlist, A1
A set $A$ is endowed with a binary operation $*$ satisfying the following four conditions:
(1) If $a, b, c$ are elements of $A$, then $a * (b * c) = (a * b) * c$ ,
(2) If $a, b, c$ are elements of $A$ such that $a * c = b *c$, then $a = b$ ,
(3) There exists an element $e$ of $A$ such that $a * e = a$ for all $a$ in $A$, and
(4) If a and b are distinct elements of $A-\{e\}$, then $a^3 * b = b^3 * a^2$, where $x^k = x * x^{k-1}$ for all integers $k \ge 2$ and all $x$ in $A$.
Determine the largest cardinality $A$ may have.
proposed by Bojan Basic, Serbia
2015 Bosnia Herzegovina Team Selection Test, 5
Let $N$ be a positive integer. It is given set of weights which satisfies following conditions:
$i)$ Every weight from set has some weight from $1,2,...,N$;
$ii)$ For every $i\in {1,2,...,N}$ in given set there exists weight $i$;
$iii)$ Sum of all weights from given set is even positive integer.
Prove that set can be partitioned into two disjoint sets which have equal weight
1987 ITAMO, 4
Given $I_0 = \{-1,1\}$, define $I_n$ recurrently as the set of solutions $x$ of the equations $x^2 -2xy+y^2- 4^n = 0$,
where $y$ ranges over all elements of $I_{n-1}$. Determine the union of the sets $I_n$ over all nonnegative integers $n$.
2000 VJIMC, Problem 1
Is there a countable set $Y$ and an uncountable family $\mathcal F$ of its subsets such that for every two distinct $A,B\in\mathcal F$, their intersection $A\cap B$ is finite?
2018 Junior Balkan Team Selection Tests - Romania, 3
Let $A =\left\{a = q + \frac{1}{q }/ q \in Q^*,q > 0 \right\}$, $A + A = \{a + b |a,b \in A\}$,$A \cdot A =\{a \cdot b | a, b \in A\}$.
Prove that:
i) $A + A \ne A \cdot A$
ii) $(A + A) \cap N = (A \cdot A) \cap N$.
Vasile Pop
1990 Czech and Slovak Olympiad III A, 6
Let $k\ge 1$ be an integer and $\mathsf S$ be a family of 2-element subsets of the index set $\{1,\ldots,2k\}$ with the following property: if $\mathsf M_1,\ldots,\mathsf M_{2k}$ are arbitrary sets such that \[\mathsf M_i\cap\mathsf M_j\neq\emptyset\quad\Leftrightarrow\quad\{i,j\}\in\mathsf S,\] then the union $\mathsf M_1\cup\ldots\cup\mathsf M_{2k}$ contains at least $k^2$ elements. Show that there is a suitable family $\mathsf S$ for any integer $k\ge1.$