Found problems: 7
2014 Rioplatense Mathematical Olympiad, Level 3, 4
A pair (a,b) of positive integers is [i]Rioplatense [/i]if it is true that $b + k$ is a multiple of $a + k$ for all $k \in\{ 0 , 1 , 2 , 3 , 4 \}$. Prove that there is an infinite set $A$ of positive integers such that for any two elements $a$ and $b$ of $A$, with $a < b$, the pair $(a,b)$ is [i]Rioplatense[/i].
2022 Junior Balkan Mathematical Olympiad, 4
We call an even positive integer $n$ [i]nice[/i] if the set $\{1, 2, \dots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of $3$. For example, $6$ is nice, because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned into subsets $\{1, 2\}$, $\{3, 6\}$, $\{4, 5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.
2022 JBMO Shortlist, C4
We call an even positive integer $n$ [i]nice[/i] if the set $\{1, 2, \dots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of $3$. For example, $6$ is nice, because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned into subsets $\{1, 2\}$, $\{3, 6\}$, $\{4, 5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.
2003 Spain Mathematical Olympiad, Problem 2
Does there exist such a finite set of real numbers ${M}$ that has at least two distinct elements and has the property that for two numbers, ${a}$, ${b}$, belonging to ${M}$, the number ${2a - b^2}$ is also an element in ${M}$?
2021 Iberoamerican, 5
For a finite set $C$ of integer numbers, we define $S(C)$ as the sum of the elements of $C$. Find two non-empty sets $A$ and $B$ whose intersection is empty, whose union is the set $\{1,2,\ldots, 2021\}$ and such that the product $S(A)S(B)$ is a perfect square.
2016 Romanian Master of Mathematics Shortlist, C4
Prove that a $46$-element set of integers contains two distinct doubletons $\{u, v\}$ and $\{x,y\}$ such that $u + v \equiv x + y$ (mod $2016$).
2018 Baltic Way, 10
The integers from $1$ to $n$ are written, one on each of $n$ cards. The first player removes one card. Then the second player removes two cards with consecutive integers. After that the first player removes three cards with consecutive integers. Finally, the second player removes four cards with consecutive integers.
What is th smallest value of $n$ for which the second player can ensure that he competes both his moves?