This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 74

2024 LMT Fall, 17

Tags: speed
For positive integers $x$, let$$f(x)=\begin{cases} \frac{f\left(\frac{x}{2}\right)}{2} &\mbox{if }x\mbox{ is even,} \\ 2^{-x} &\mbox{if }x\mbox{ is odd.} \end{cases}$$Find $f(1)+f(2)+f(3)+\dots$.

2024 LMT Fall, 3

Tags: speed
High schoolers chew a lot of gum. At the supermarket, $15$ packs of $14$ sticks of gum costs $\$10$. If $1400$ high schoolers chew $3$ sticks of gum per day, find the total number of dollars spent by these high schoolers on gum per week.

2023 LMT Fall, 1

Tags: speed , alg
If $a \diamondsuit b = \vert a - b \vert \cdot \vert b - a \vert$ then find the value of $1 \diamondsuit (2 \diamondsuit (3 \diamondsuit (4 \diamondsuit 5)))$. [i]Proposed by Muztaba Syed[/i] [hide=Solution] [i]Solution.[/i] $\boxed{9}$ $a\diamondsuit b = (a-b)^2$. This gives us an answer of $\boxed{9}$. [/hide]

2021 MOAA, 4

Let $a$, $b$, and $c$ be real numbers such that $0\le a,b,c\le 5$ and $2a + b + c = 10$. Over all possible values of $a$, $b$, and $c$, determine the maximum possible value of $a + 2b + 3c$. [i]Proposed by Andrew Wen[/i]

2024 LMT Fall, 15

Tags: speed
Find the value of $1 \cdot 2 \cdot 3 \cdot 4 + 2\cdot3\cdot4\cdot5 + \dots + 6\cdot7\cdot8\cdot9$.

2021 Sharygin Geometry Olympiad, 8.3

Three cockroaches run along a circle in the same direction. They start simultaneously from a point $S$. Cockroach $A$ runs twice as slow than $B$, and thee times as slow than $C$. Points $X, Y$ on segment $SC$ are such that $SX = XY =YC$. The lines $AX$ and $BY$ meet at point $Z$. Find the locus of centroids of triangles $ZAB$.

2024 LMT Fall, 8

Tags: speed
The LHS Math Team is doing Karaoke. William sings every song, David sings every other song, Peter sings every third song, and Muztaba sings every fourth song. If they sing $600$ songs, find the average number of people singing each song.

2024 LMT Fall, 13

Tags: speed
Some math team members decide to study at Cary Library after school. They walk $6$ blocks north, then $8$ blocks west to get there. If they walk $n$ blocks east from the library, they can buy boba from CoCo's. If CoCo's is the same distance from school as it is from the library, find $n$.

2021 MOAA, 8

Tags: speed
Andrew chooses three (not necessarily distinct) integers $a$, $b$, and $c$ independently and uniformly at random from $\{1,2,3,4,5,6,7\}$. Let $p$ be the probability that $abc(a+b+c)$ is divisible by $4$. If $p$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, then compute $m+n$. [i]Proposed by Andrew Wen[/i]

2024 LMT Fall, 9

Tags: speed
Find the median of the positive divisors of $6^4-1$.

1985 Tournament Of Towns, (094) 2

The radius $OM$ of a circle rotates uniformly at a rate of $360/n$ degrees per second , where $n$ is a positive integer . The initial radius is $OM_0$. After $1$ second the radius is $OM_1$ , after two more seconds (i.e. after three seconds altogether) the radius is $OM_2$ , after $3$ more seconds (after $6$ seconds altogether) the radius is $OM_3$, ..., after $n - 1$ more seconds its position is $OM_{n-1}$. For which values of $n$ do the points $M_0, M_1 , ..., M_{n-1}$ divide the circle into $n$ equal arcs? (a) Is it true that the powers of $2$ are such values? (b) Does there exist such a value which is not a power of $2$? (V. V. Proizvolov , Moscow)

2015 Lusophon Mathematical Olympiad, 3

In the center of a square is a rabbit and at each vertex of this even square, a wolf. The wolves only move along the sides of the square and the rabbit moves freely in the plane. Knowing that the rabbit move at a speed of $10$ km / h and that the wolves move to a maximum speed of $14$ km / h, determine if there is a strategy for the rabbit to leave the square without being caught by the wolves.

2023 LMT Fall, 3

Tags: speed , alg
Sam Wang decides to evaluate an expression of the form $x +2 \cdot 2+ y$. However, he unfortunately reads each ’plus’ as a ’times’ and reads each ’times’ as a ’plus’. Surprisingly, he still gets the problem correct. Find $x + y$. [i]Proposed by Edwin Zhao[/i] [hide=Solution] [i]Solution.[/i] $\boxed{4}$ We have $x+2*2+y=x \cdot 2+2 \cdot y$. When simplifying, we have $x+y+4=2x+2y$, and $x+y=4$. [/hide]

2023 LMT Fall, 6

Tags: speed , combi
Blue rolls a fair $n$-sided die that has sides its numbered with the integers from $1$ to $n$, and then he flips a coin. Blue knows that the coin is weighted to land heads either $\dfrac{1}{3}$ or $\dfrac{2}{3}$ of the time. Given that the probability of both rolling a $7$ and flipping heads is $\dfrac{1}{15}$, find $n$. [i]Proposed by Jacob Xu[/i] [hide=Solution][i]Solution[/i]. $\boxed{10}$ The chance of getting any given number is $\dfrac{1}{n}$ , so the probability of getting $7$ and heads is either $\dfrac{1}{n} \cdot \dfrac{1}{3}=\dfrac{1}{3n}$ or $\dfrac{1}{n} \cdot \dfrac{2}{3}=\dfrac{2}{3n}$. We get that either $n = 5$ or $n = 10$, but since rolling a $7$ is possible, only $n = \boxed{10}$ is a solution.[/hide]

LMT Speed Rounds, 6

Tags: speed , combi
Blue rolls a fair $n$-sided die that has sides its numbered with the integers from $1$ to $n$, and then he flips a coin. Blue knows that the coin is weighted to land heads either $\dfrac{1}{3}$ or $\dfrac{2}{3}$ of the time. Given that the probability of both rolling a $7$ and flipping heads is $\dfrac{1}{15}$, find $n$. [i]Proposed by Jacob Xu[/i] [hide=Solution][i]Solution[/i]. $\boxed{10}$ The chance of getting any given number is $\dfrac{1}{n}$ , so the probability of getting $7$ and heads is either $\dfrac{1}{n} \cdot \dfrac{1}{3}=\dfrac{1}{3n}$ or $\dfrac{1}{n} \cdot \dfrac{2}{3}=\dfrac{2}{3n}$. We get that either $n = 5$ or $n = 10$, but since rolling a $7$ is possible, only $n = \boxed{10}$ is a solution.[/hide]

2024 LMT Fall, 10

Tags: speed
Today is $12/14/24,$ which is of the form $ab/ac/bc$ for not necessarily distinct digits $a$, $b$, and $c$. Find the number of other dates in the $21$st century that can also be written in this form.

2024 LMT Fall, 1

Tags: speed
Find the value of \[(2+0+2+4)+\left(2^0+2^4\right)+\left(2^{0^{2^4}}\right).\]

MOAA Individual Speed General Rounds, 2021.5

Tags: speed
There are 12 students in Mr. DoBa's math class. On the final exam, the average score of the top 3 students was 8 more than the average score of the other students, and the average score of the entire class was 85. Compute the average score of the top $3$ students. [i]Proposed by Yifan Kang[/i]

2024 LMT Fall, 4

Tags: speed
Define $x\star y$ to be $xy\cdot \min(x,y)$ and $x\diamond y$ to be $xy\cdot \max(x,y)$. Suppose $ab=4$. Find the value of \[ (a\star b)\cdot (a\diamond b). \]

2024 LMT Fall, 2

Tags: speed
The angles in triangle $ABC$ are such that $\angle A$, $\angle B$, $\angle C$ form an arithmetic progression in that order. Find the measure of $\angle B$, in degrees.

2021 MOAA, 5

Tags: speed
There are 12 students in Mr. DoBa's math class. On the final exam, the average score of the top 3 students was 8 more than the average score of the other students, and the average score of the entire class was 85. Compute the average score of the top $3$ students. [i]Proposed by Yifan Kang[/i]

2021 MOAA, 7

Tags: speed
If positive real numbers $x,y,z$ satisfy the following system of equations, compute $x+y+z$. $$xy+yz = 30$$ $$yz+zx = 36$$ $$zx+xy = 42$$ [i]Proposed by Nathan Xiong[/i]

2024 LMT Fall, 11

Tags: speed
Let $x$ and $y$ be real numbers such that \[ x+\frac{1}{y} = 20 \,\,\, \text{and} \,\,\, y+\frac{1}{x} = 24. \]Find $\frac{x}{y}.$

2002 Swedish Mathematical Competition, 2

Tags: algebra , speed
$A, B, C$ can walk at $5$ km/hr. They have a car that can accomodate any two of them whch travels at $50$ km/hr. Can they reach a point $62$ km away in less than $3$ hrs?

1999 Tournament Of Towns, 1

Tags: geometry , speed , algebra
A father and his son are skating around a circular skating rink. From time to time, the father overtakes the son. After the son starts skating in the opposite direction, they begin to meet five times more often. What is the ratio of the skating speeds of the father and the son? (Tairova)