This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 59

1982 All Soviet Union Mathematical Olympiad, 340

The square table $n\times n$ is filled by integers. If the fields have common side, the difference of numbers in them doesn't exceed $1$. Prove that some number is encountered not less than a) not less than $[n/2]$ times ($[ ...]$ mean the whole part), b) not less than $n$ times.

2019 Junior Balkan Team Selection Tests - Romania, 4

In every unit square of a$ n \times n$ table ($n \ge 11$) a real number is written, such that the sum of the numbers in any $10 \times 10$ square is positive and the sum of the numbers in any $11\times 11$ square is negative. Determine all possible values for $n$

2007 Estonia Team Selection Test, 6

Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?

1988 All Soviet Union Mathematical Olympiad, 478

$n^2$ real numbers are written in a square $n \times n$ table so that the sum of the numbers in each row and column equals zero. A move is to add a row to one column and subtract it from another (so if the entries are $a_{ij}$ and we select row $i$, column $h$ and column $k$, then column h becomes $a_{1h} + a_{i1}, a_{2h} + a_{i2}, ... , a_{nh} + a_{in}$, column $k$ becomes $a_{1k} - a_{i1}, a_{2k} - a_{i2}, ... , a_{nk} - a_{in}$, and the other entries are unchanged). Show that we can make all the entries zero by a series of moves.

2014 Tournament of Towns., 2

Peter marks several cells on a $5\times 5$ board. Basil wins if he can cover all marked cells with three-cell corners. The corners must be inside the board and not overlap. What is the least number of cells Peter should mark to prevent Basil from winning? (Cells of the corners must coincide with the cells of the board).

1980 Tournament Of Towns, (002) 2

In a $N \times N$ array of numbers, all rows are different (two rows are said to be different even if they differ only in one entry). Prove that there is a column which can be deleted in such a way that the resulting rows will still be different. (A Andjans, Riga)

1982 All Soviet Union Mathematical Olympiad, 345

Given the square table $n\times n$ with $(n-1)$ marked fields. Prove that it is possible to move all the marked fields below the diagonal by moving rows and columns.

2001 Estonia National Olympiad, 5

A $3\times 3$ table is filled with real numbers in such a way that each number in the table is equal to the absolute value of the difference of the sum of numbers in its row and the sum of numbers in its column. (a) Show that any number in this table can be expressed as a sum or a difference of some two numbers in the table. (b) Show that there is such a table not all of whose entries are $0$.

2010 Estonia Team Selection Test, 6

Every unit square of a $n \times n$ board is colored either red or blue so that among all 2 $\times 2$ squares on this board all possible colorings of $2 \times 2$ squares with these two colors are represented (colorings obtained from each other by rotation and reflection are considered different). a) Find the least possible value of $n$. b) For the least possible value of $n$ find the least possible number of red unit squares

2005 Estonia National Olympiad, 5

A $5\times 5$ board is covered by eight hooks (a three unit square figure, shown in the picture) so that one unit square remains free. Determine all squares of the board that can remain free after such covering. [img]https://cdn.artofproblemsolving.com/attachments/6/8/a8c4e47ba137b904bd28c01c1d2cb765824e6a.png[/img]

1999 Tournament Of Towns, 5

Two people play a game on a $9 \times 9$ board. They move alternately. On each move, the first player draws a cross in an empty cell, and the second player draws a nought in an empty cell. When all $81$ cells are filled, the number $K$ of rows and columns in which there are more crosses and the number $H$ of rows and columns in which there are more noughts are counted. The score for the first player is the difference $B = K- H$. Find a value of $B$ such that the first player can guarantee a score of at least $B$, while the second player can hold the first player's score to at most B, regardless how the opponent plays. (A Kanel)

2021 Saudi Arabia Training Tests, 29

Prove that it is impossible to fill the cells of an $8 \times 8$ table with the numbers from $ 1$ to $64$ (each number must be used once) so that for each $2\times 2$ square, the difference between products of the numbers on it’s diagonals will be equal to $ 1$.

2014 Singapore Junior Math Olympiad, 5

In an $8 \times 8$ grid, $n$ disks, numbered $1$ to $n$ are stacked, with random order, in a pile in the bottom left comer. The disks can be moved one at a time to a neighbouring cell either to the right or top. The aim to move all the disks to the cell at the top right comer and stack them in the order $1,2,...,n$ from the bottom. Each cell, except the bottom left and top right cell, can have at most one disk at any given time. Find the largest value of $n$ so that the aim can be achieved.

2010 Estonia Team Selection Test, 6

Every unit square of a $n \times n$ board is colored either red or blue so that among all 2 $\times 2$ squares on this board all possible colorings of $2 \times 2$ squares with these two colors are represented (colorings obtained from each other by rotation and reflection are considered different). a) Find the least possible value of $n$. b) For the least possible value of $n$ find the least possible number of red unit squares

1968 All Soviet Union Mathematical Olympiad, 105

a) The fields of the square table $4\times 4$ are filled with the "+" or "-" signs. You are allowed to change the signs simultaneously in the whole row, column, or diagonal to the opposite sign. That means, for example, that You can change the sign in the corner square, because it makes a diagonal itself. Prove that you will never manage to obtain a table containing pluses only. b) The fields of the square table $8\times 8$ are filled with the "+" or signs except one non-corner field with "-". You are allowed to change the signs simultaneously in the whole row, column, or diagonal to the opposite sign. That means, for example, that You can change the sign in the corner field, because it makes a diagonal itself. Prove that you will never manage to obtain a table containing pluses only.

2017 Estonia Team Selection Test, 7

Let $n$ be a positive integer. In how many ways can an $n \times n$ table be filled with integers from $0$ to $5$ such that a) the sum of each row is divisible by $2$ and the sum of each column is divisible by $3$ b) the sum of each row is divisible by $2$, the sum of each column is divisible by $3$ and the sum of each of the two diagonals is divisible by $6$?

1977 Swedish Mathematical Competition, 5

The numbers $1, 2, 3, ... , 64$ are written in the cells of an $8 \times 8$ board (in some order, one per cell). Show that at least four $2 \times 2$ squares have sum greater than $100$.

1983 All Soviet Union Mathematical Olympiad, 349

Every cell of a $4\times 4$ square grid net, has $1\times 1$ size. Is it possible to represent this net as a union of the following sets: a) Eight broken lines of length five each? b) Five broken lines of length eight each?

2015 Grand Duchy of Lithuania, 3

A table consists of $17 \times 17$ squares. In each square one positive integer from $1$ to $17$ is written, every such number is written in exactly $17$ squares. Prove that there is a row or a column of the table that contains at least $5$ different numbers.

2019 BAMO, D/2

Initially, all the squares of an $8\times 8$ grid are white. You start by choosing one of the squares and coloring it gray. After that, you may color additional squares gray one at a time, but you may only color a square gray if it has exactly $1$ or $3$ gray neighbors at that moment (where a neighbor is a square sharing an edge). For example, the configuration below (of a smaller $3\times 4$ grid) shows a situation where six squares have been colored gray so far. The squares that can be colored at the next step are marked with a dot. Is it possible to color all the squares gray? Justify your answer. [img]https://cdn.artofproblemsolving.com/attachments/1/c/d50ab269f481e4e516dace06a991e6b37f2a85.png[/img]

1987 All Soviet Union Mathematical Olympiad, 444

The "Sea battle" game. a) You are trying to find the $4$-field ship -- a rectangle $1x4$, situated on the $7x7$ playing board. You are allowed to ask a question, whether it occupies the particular field or not. How many questions is it necessary to ask to find that ship surely? b) The same question, but the ship is a connected (i.e. its fields have common sides) set of $4$ fields.

1991 All Soviet Union Mathematical Olympiad, 550

a) $r_1, r_2, ... , r_{100}, c_1, c_2, ... , c_{100}$ are distinct reals. The number $r_i + c_j$ is written in position $i, j$ of a $100 \times 100$ array. The product of the numbers in each column is $1$. Show that the product of the numbers in each row is $-1$. b) $r_1, r_2, ... , r_{2n}, c_1, c_2, ... , c_{2n}$ are distinct reals. The number $r_i + c_j$ is written in position $i, j$ of a $2n \times 2n$ array. The product of the numbers in each column is the same. Show that the product of the numbers in each row is also the same.

2019 Saudi Arabia Pre-TST + Training Tests, 2.2

A sequence $(a_1, a_2,...,a_k)$ consisting of pairwise different cells of an $n\times n$ board is called a cycle if $k \ge 4$ and cell ai shares a side with cell $a_{i+1}$ for every $i = 1,2,..., k$, where $a_{k+1} = a_1$. We will say that a subset $X$ of the set of cells of a board is [i]malicious [/i] if every cycle on the board contains at least one cell belonging to $X$. Determine all real numbers $C$ with the following property: for every integer $n \ge 2$ on an $n\times n$ board there exists a malicious set containing at most $Cn^2$ cells.

1986 All Soviet Union Mathematical Olympiad, 435

All the fields of a square $n\times n$ (n>2) table are filled with $+1$ or $-1$ according to the rules: [i]At the beginning $-1$ are put in all the boundary fields. The number put in the field in turn (the field is chosen arbitrarily) equals to the product of the closest, from the different sides, numbers in its row or in its column. [/i] a) What is the minimal b) What is the maximal possible number of $+1$ in the obtained table?

1967 Czech and Slovak Olympiad III A, 3

Consider a table of cyclic permutations ($n\ge2$) \[ \begin{matrix} 1, & 2, & \ldots, & n-1, & n \\ 2, & 3, & \ldots, & n, & 1, \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n, & 1, & \ldots, & n-2, & n-1. \end{matrix} \] Then multiply each number of the first row by that number of the $k$-th row that is in the same column. Sum all these products and denote $s_k$ the result (e.g. $s_2=1\cdot2+2\cdot3+\cdots+(n-1)\cdot n+n\cdot1$). a) Find a recursive relation for $s_k$ in terms of $s_{k-1}$ and determine the explicit formula for $s_k$. b) Determine both an index $k$ and the value of $s_k$ such that the sum $s_k$ is minimal.