Found problems: 56
2013 ELMO Shortlist, 5
There is a $2012\times 2012$ grid with rows numbered $1,2,\dots 2012$ and columns numbered $1,2,\dots, 2012$, and we place some rectangular napkins on it such that the sides of the napkins all lie on grid lines. Each napkin has a positive integer thickness. (in micrometers!)
(a) Show that there exist $2012^2$ unique integers $a_{i,j}$ where $i,j \in [1,2012]$ such that for all $x,y\in [1,2012]$, the sum \[ \sum _{i=1}^{x} \sum_{j=1}^{y} a_{i,j} \] is equal to the sum of the thicknesses of all the napkins that cover the grid square in row $x$ and column $y$.
(b) Show that if we use at most $500,000$ napkins, at least half of the $a_{i,j}$ will be $0$.
[i]Proposed by Ray Li[/i]
2009 Putnam, B1
Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example, $ \frac{10}9\equal{}\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}.$
2000 CentroAmerican, 3
Let's say we have a [i]nice[/i] representation of the positive integer $ n$ if we write it as a sum of powers of 2 in such a way that there are at most two equal powers in the sum (representations differing only in the order of their summands are considered to be the same).
a) Write down the 5 nice representations of 10.
b) Find all positive integers with an even number of nice representations.
2023 Bangladesh Mathematical Olympiad, P7
Prove that every positive integer can be represented in the form $$3^{m_1}\cdot 2^{n_1}+3^{m_2}\cdot 2^{n_2} + \dots + 3^{m_k}\cdot 2^{n_k}$$
where $m_1 > m_2 > \dots > m_k \geq 0$ and $0 \leq n_1 < n_2 < \dots < n_k$ are integers.
2010 IMC, 3
Denote by $S_n$ the group of permutations of the sequence $(1,2,\dots,n).$ Suppose that $G$ is a subgroup of $S_n,$ such that for every $\pi\in G\setminus\{e\}$ there exists a unique $k\in \{1,2,\dots,n\}$ for which $\pi(k)=k.$ (Here $e$ is the unit element of the group $S_n.$) Show that this $k$ is the same for all $\pi \in G\setminus \{e\}.$
2010 IberoAmerican Olympiad For University Students, 4
Let $p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a monic polynomial of degree $n>2$, with real coefficients and all its roots real and different from zero. Prove that for all $k=0,1,2,\cdots,n-2$, at least one of the coefficients $a_k,a_{k+1}$ is different from zero.
2012 Online Math Open Problems, 20
The numbers $1, 2, \ldots, 2012$ are written on a blackboard. Each minute, a student goes up to the board, chooses two numbers $x$ and $y$, erases them, and writes the number $2x+2y$ on the board. This continues until only one number $N$ remains. Find the remainder when the maximum possible value of $N$ is divided by 1000.
[i]Victor Wang.[/i]
1969 Canada National Olympiad, 8
Let $f$ be a function with the following properties:
1) $f(n)$ is defined for every positive integer $n$;
2) $f(n)$ is an integer;
3) $f(2)=2$;
4) $f(mn)=f(m)f(n)$ for all $m$ and $n$;
5) $f(m)>f(n)$ whenever $m>n$.
Prove that $f(n)=n$.
2020 Durer Math Competition Finals, 1
Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \] is eventually constant.
[The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]
2004 Junior Balkan MO, 4
Consider a convex polygon having $n$ vertices, $n\geq 4$. We arbitrarily decompose the polygon into triangles having all the vertices among the vertices of the polygon, such that no two of the triangles have interior points in common. We paint in black the triangles that have two sides that are also sides of the polygon, in red if only one side of the triangle is also a side of the polygon and in white those triangles that have no sides that are sides of the polygon.
Prove that there are two more black triangles that white ones.
2010 Contests, 1
Assume real numbers $a_i,b_i\,(i=0,1,\cdots,2n)$ satisfy the following conditions:
(1) for $i=0,1,\cdots,2n-1$, we have $a_i+a_{i+1}\geq 0$;
(2) for $j=0,1,\cdots,n-1$, we have $a_{2j+1}\leq 0$;
(2) for any integer $p,q$, $0\leq p\leq q\leq n$, we have $\sum_{k=2p}^{2q}b_k>0$.
Prove that $\sum_{i=0}^{2n}(-1)^i a_i b_i\geq 0$, and determine when the equality holds.
2002 Mexico National Olympiad, 3
Let $n$ be a positive integer. Does $n^2$ has more positive divisors of the form $4k+1$ or of the form $4k-1$?
1985 Iran MO (2nd round), 1
Let $\alpha $ be an angle such that $\cos \alpha = \frac pq$, where $p$ and $q$ are two integers. Prove that the number $q^n \cos n \alpha$ is an integer.
PEN K Problems, 2
Find all surjective functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[m \vert n \Longleftrightarrow f(m) \vert f(n).\]
2006 IberoAmerican, 3
Consider a regular $n$-gon with $n$ odd. Given two adjacent vertices $A_{1}$ and $A_{2},$ define the sequence $(A_{k})$ of vertices of the $n$-gon as follows: For $k\ge 3,\, A_{k}$ is the vertex lying on the perpendicular bisector of $A_{k-2}A_{k-1}.$ Find all $n$ for which each vertex of the $n$-gon occurs in this sequence.
PEN O Problems, 38
Prove that for every real number $M$ there exists an infinite arithmetical progression of positive integers such that [list] [*] the common difference is not divisible by $10$, [*] the sum of digits of each term exceeds $M$. [/list]
2013 Baltic Way, 7
A positive integer is written on a blackboard. Players $A$ and $B$ play the following game: in each move one has to choose a proper divisor $m$ of the number $n$ written on the blackboard ($1<m<n$) and replaces $n$ with $n-m$. Player $A$ makes the first move, then players move alternately. The player who can't make a move loses the game. For which starting numbers is there a winning strategy for player $B$?
2010 China Team Selection Test, 1
Assume real numbers $a_i,b_i\,(i=0,1,\cdots,2n)$ satisfy the following conditions:
(1) for $i=0,1,\cdots,2n-1$, we have $a_i+a_{i+1}\geq 0$;
(2) for $j=0,1,\cdots,n-1$, we have $a_{2j+1}\leq 0$;
(2) for any integer $p,q$, $0\leq p\leq q\leq n$, we have $\sum_{k=2p}^{2q}b_k>0$.
Prove that $\sum_{i=0}^{2n}(-1)^i a_i b_i\geq 0$, and determine when the equality holds.
2023 CMI B.Sc. Entrance Exam, 6
Consider a positive integer $a > 1$. If $a$ is not a perfect square then at the next move we add $3$ to it and if it is a perfect square we take the square root of it. Define the trajectory of a number $a$ as the set obtained by performing this operation on $a$. For example the cardinality of $3$ is $\{3, 6, 9\}$.
Find all $n$ such that the cardinality of $n$ is finite.
The following part problems may attract partial credit.
$\textbf{(a)}$Show that the cardinality of the trajectory of a number cannot be $1$ or $2$.
$\textbf{(b)}$Show that $\{3, 6, 9\}$ is the only trajectory with cardinality $3$.
$\textbf{(c)}$ Show that there for all $k \geq 3$, there exists a number such that the cardinality
of its trajectory is $k$.
$\textbf{(d)}$ Give an example of a number with cardinality of trajectory as infinity.
2010 All-Russian Olympiad, 4
There are 100 apples on the table with total weight of 10 kg. Each apple weighs no less than 25 grams. The apples need to be cut for 100 children so that each of the children gets 100 grams. Prove that you can do it in such a way that each piece weighs no less than 25 grams.
1991 USAMO, 3
Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[ 2, \; 2^2, \; 2^{2^2}, \; 2^{2^{2^2}}, \ldots (\mbox{mod} \; n) \] is eventually constant.
[The tower of exponents is defined by $a_1 = 2, \; a_{i+1} = 2^{a_i}$. Also $a_i \; (\mbox{mod} \; n)$ means the remainder which results from dividing $a_i$ by $n$.]
1996 USAMO, 4
An $n$-term sequence $(x_1, x_2, \ldots, x_n)$ in which each term is either 0 or 1 is called a [i]binary sequence of length [/i]$n$. Let $a_n$ be the number of binary sequences of length $n$ containing no three consecutive terms equal to 0, 1, 0 in that order. Let $b_n$ be the number of binary sequences of length $n$ that contain no four consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. Prove that $b_{n+1} = 2a_n$ for all positive integers $n$.
2013 ELMO Shortlist, 2
Let $n$ be a fixed positive integer. Initially, $n$ 1's are written on a blackboard. Every minute, David picks two numbers $x$ and $y$ written on the blackboard, erases them, and writes the number $(x+y)^4$ on the blackboard. Show that after $n-1$ minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$.
[i]Proposed by Calvin Deng[/i]
2010 India National Olympiad, 6
Define a sequence $ < a_n > _{n\geq0}$ by $ a_0 \equal{} 0$, $ a_1 \equal{} 1$ and
\[ a_n \equal{} 2a_{n \minus{} 1} \plus{} a_{n \minus{} 2},\]
for $ n\geq2.$
$ (a)$ For every $ m > 0$ and $ 0\leq j\leq m,$ prove that $ 2a_m$ divides
$ a_{m \plus{} j} \plus{} ( \minus{} 1)^ja_{m \minus{} j}$.
$ (b)$ Suppose $ 2^k$ divides $ n$ for some natural numbers $ n$ and $ k$. Prove that $ 2^k$ divides $ a_n.$
1989 Bundeswettbewerb Mathematik, 4
Positive integers $x_1, x_2, \dots, x_n$ ($n \ge 4$) are arranged in a circle such that each $x_i$ divides the sum of the neighbors; that is \[ \frac{x_{i-1}+x_{i+1}}{x_i} = k_i \] is an integer for each $i$, where $x_0 = x_n$, $x_{n+1} = x_1$. Prove that \[ 2n \le k_1 + k_2 + \dots + k_n < 3n. \]