This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 183

1963 Miklós Schweitzer, 3

Let $ R\equal{}R_1\oplus R_2$ be the direct sum of the rings $ R_1$ and $ R_2$, and let $ N_2$ be the annihilator ideal of $ R_2$ (in $ R_2$). Prove that $ R_1$ will be an ideal in every ring $ \widetilde{R}$ containing $ R$ as an ideal if and only if the only homomorphism from $ R_1$ to $ N_2$ is the zero homomorphism. [Gy. Hajos]

1986 Traian Lălescu, 1.1

Let be two nontrivial rings linked by an application ($ K\stackrel{\vartheta }{\mapsto } L $) having the following properties: $ \text{(i)}\quad x,y\in K\implies \vartheta (x+y) = \vartheta (x) +\vartheta (y) $ $ \text{(ii)}\quad \vartheta (1)=1 $ $ \text{(iii)}\quad \vartheta \left( x^3\right) =\vartheta^3 (x) $ [b]a)[/b] Show that if $ \text{char} (L)\ge 4, $ and $ K,L $ are fields, then $ \vartheta $ is an homomorphism. [b]b)[/b] Prove that if $ K $ is a noncommutative division ring, then it’s possible that $ \vartheta $ is not an homomorphism.

1993 Hungary-Israel Binational, 4

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Let $H \leq G$ and $a, b \in G.$ Prove that $|aH \cap Hb|$ is either zero or a divisor of $|H |.$

2008 District Olympiad, 4

Let be a finite field $ K. $ Say that two polynoms $ f,g $ from $ K[X] $ are [i]neighbours,[/i] if the have the same degree and they differ by exactly one coefficient. [b]a)[/b] Show that all the neighbours of $ 1+X^2 $ from $ \mathbb{Z}_3[X] $ are reducible in $ \mathbb{Z}_3[X] . $ [b]b)[/b] If $ |K|\ge 4, $ show that any polynomial of degree $ |K|-1 $ from $ K[X] $ has a neighbour from $ K[X] $ that is reducible in $ K[X] , $ and also has a neighbour that doesn´t have any root in $ K. $

2013 District Olympiad, 4

Problem 4. Let$\left( A,+,\cdot \right)$ be a ring with the property that $x=0$ is the only solution of the ${{x}^{2}}=0,x\in A$ecuation. Let $B=\left\{ a\in A|{{a}^{2}}=1 \right\}$. Prove that: (a) $ab-ba=bab-a$, whatever would be $a\in A$ and $b\in B$. (b) $\left( B,\cdot \right)$ is a group

1993 Hungary-Israel Binational, 6

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Let $a, b \in G.$ Suppose that $ab^{2}= b^{3}a$ and $ba^{2}= a^{3}b.$ Prove that $a = b = 1.$

2019 District Olympiad, 1

Let $n$ be a positive integer and $G$ be a finite group of order $n.$ A function $f:G \to G$ has the $(P)$ property if $f(xyz)=f(x)f(y)f(z)~\forall~x,y,z \in G.$ $\textbf{(a)}$ If $n$ is odd, prove that every function having the $(P)$ property is an endomorphism. $\textbf{(b)}$ If $n$ is even, is the conclusion from $\textbf{(a)}$ still true?

2018 District Olympiad, 4

Let $n$ and $q$ be two natural numbers, $n\ge 2$, $q\ge 2$ and $q\not\equiv 1 (\text{mod}\ 4)$ and let $K$ be a finite field which has exactly $q$ elements. Show that for any element $a$ from $K$, there exist $x$ and $y$ in $K$ such that $a = x^{2^n} + y^{2^n}$. (Every finite field is commutative).

2009 IMS, 7

Let $ G$ be a group such that $ G'$ is abelian and each normal and abelian subgroup of $ G$ is finite. Prove that $ G$ is finite.

1981 Miklós Schweitzer, 4

Let $ G$ be finite group and $ \mathcal{K}$ a conjugacy class of $ G$ that generates $ G$. Prove that the following two statements are equivalent: (1) There exists a positive integer $ m$ such that every element of $ G$ can be written as a product of $ m$ (not necessarily distinct) elements of $ \mathcal{K}$. (2) $ G$ is equal to its own commutator subgroup. [i]J. Denes[/i]

1979 Miklós Schweitzer, 4

For what values of $ n$ does the group $ \textsl{SO}(n)$ of all orthogonal transformations of determinant $ 1$ of the $ n$-dimensional Euclidean space possess a closed regular subgroup?($ \textsl{G}<\textsl{SO}(n)$ is called $ \textit{regular}$ if for any elements $ x,y$ of the unit sphere there exists a unique $ \varphi \in \textsl{G}$ such that $ \varphi(x)\equal{}y$.) [i]Z. Szabo[/i]

2005 Alexandru Myller, 2

Let $A\in M_4(\mathbb R)$ be an invertible matrix s.t. $\det(A+^tA)=5\det A$ and $\det (A-^tA)=\det A$. Prove that for every complex root $\omega$ of order 5 of unitity (i.e. $\omega^5=1,\omega\not\in\mathbb R$) the following relation holds $\det(\omega A+^tA)=0$. [i]Dan Popescu[/i]

2009 Miklós Schweitzer, 4

Prove that the polynomial \[ f(x) \equal{} \frac {x^n \plus{} x^m \minus{} 2}{x^{\gcd(m,n)} \minus{} 1}\] is irreducible over $ \mathbb{Q}$ for all integers $ n > m > 0$.

2016 District Olympiad, 1

A ring $ A $ has property [i](P),[/i] if $ A $ is finite and there exists $ (\{ 0\}\neq R,+)\le (A,+) $ such that $ (U(A),\cdot )\cong (R,+) . $ Show that: [b]a)[/b] If a ring has property [i](P),[/i] then, the number of its elements is even. [b]b)[/b] There are infinitely many rings of distinct order that have property [i](P).[/i]

1968 Miklós Schweitzer, 6

Let $ \Psi\equal{}\langle A;...\rangle$ be an arbitrary, countable algebraic structure (that is, $ \Psi$ can have an arbitrary number of finitary operations and relations). Prove that $ \Psi$ has as many as continuum automorphisms if and only if for any finite subset $ A'$ of $ A$ there is an automorphism $ \pi_{A'}$ of $ \Psi$ different from the identity automorphism and such that \[ (x) \pi_{A'}\equal{}x\] for every $ x \in A'$. [i]M. Makkai[/i]

2009 IMS, 1

$ G$ is a group. Prove that the following are equivalent: 1. All subgroups of $ G$ are normal. 2. For all $ a,b\in G$ there is an integer $ m$ such that $ (ab)^m\equal{}ba$.

2013 Romania National Olympiad, 4

Given $n\ge 2$ a natural number, $(K,+,\cdot )$ a body with commutative property that $\underbrace{1+...+}_{m}1\ne 0,m=2,...,n,f\in K[X]$ a polynomial of degree $n$ and $G$ a subgroup of the additive group $(K,+,\cdot )$, $G\ne K.$Show that there is $a\in K$ so$f(a)\notin G$.

2021 Science ON grade XII, 4

Consider a group $G$ with at least $2$ elements and the property that each nontrivial element has infinite order. Let $H$ be a cyclic subgroup of $G$ such that the set $\{xH\mid x\in G\}$ has $2$ elements. \\ $\textbf{(a)}$ Prove that $G$ is cyclic. \\ $\textbf{(b)}$ Does the conclusion from $\textbf{(a)}$ stand true if $G$ contains nontrivial elements of finite order?

1993 Hungary-Israel Binational, 1

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Suppose $k \geq 2$ is an integer such that for all $x, y \in G$ and $i \in \{k-1, k, k+1\}$ the relation $(xy)^{i}= x^{i}y^{i}$ holds. Show that $G$ is Abelian.

1974 Miklós Schweitzer, 4

Let $ R$ be an infinite ring such that every subring of $ R$ different from $ \{0 \}$ has a finite index in $ R$. (By the index of a subring, we mean the index of its additive group in the additive group of $ R$.) Prove that the additive group of $ R$ is cyclic. [i]L. Lovasz, J. Pelikan[/i]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, A1

Find the smallest positive integer value of $N$ such that field $K=\mathbb{Q}(\sqrt{N},\ \sqrt{i+1})$, where $i=\sqrt{-1}$, is Galois extension on $\mathbb{Q}$, then find the Galois group $Gal(K/\mathbb{Q}).$

1987 Traian Lălescu, 1.1

Describe all groups $ G $ which have the property that: $$ (\forall H\le G)(\forall x,y\in G)(xy\in H\implies (x,y\in H\vee xy=1)) $$

2014 IMS, 7

Let $G$ be a finite group such that for every two subgroups of it like $H$ and $K$, $H \cong K$ or $H \subseteq K$ or $K \subseteq H$. Prove that we can produce each subgroup of $G$ with 2 elements at most.

2004 Gheorghe Vranceanu, 1

Let $(G,\cdot)$ be a group, and let $H_1,H_2$ be proper subgroups s.t. $H_1\cap H_2=\{e\}$, where $e$ is the identity element of $G$. They also have the following properties: [b]i)[/b] $x\in G\setminus(H_1\cup H_2),y\in H_1\setminus\{e\}\Rightarrow xy\in H_2$ [b]ii)[/b] $x\in G\setminus(H_1\cup H_2),y\in H_2\setminus\{e\}\Rightarrow xy\in H_1$ Prove that: [b]a)[/b] $|H_1|=|H_2|$ [b]b)[/b] $|G|=|H_1|\cdot |H_2|$

2010 District Olympiad, 1

Let $ S$ be the sum of the inversible elements of a finite ring. Prove that $ S^2\equal{}S$ or $ S^2\equal{}0$.