This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 28

2009 Bundeswettbewerb Mathematik, 3

Let $P$ be a point inside the triangle $ABC$ and $P_a, P_b ,P_c$ be the symmetric points wrt the midpoints of the sides $BC, CA,AB$ respectively. Prove that that the lines $AP_a, BP_b$ and $CP_c$ are concurrent.

Ukrainian TYM Qualifying - geometry, 2014.22

In $\vartriangle ABC$ on the sides $BC, CA, AB$ mark feet of altitudes $H_1, H_2, H_3$ and the midpoint of sides $M_1, M_3, M_3$. Let $H$ be orthocenter $\vartriangle ABC$. Suppose that $X_2, X_3$ are points symmetric to $H_1$ wrt $BH_2$ and $CH_3$. Lines $M_3X_2$ and $M_2X_3$ intersect at point $X$. Similarly, $Y_3,Y_1$ are points symmetric to $H_2$ wrt $C_3H$ and $AH_1$.Lines $M_1Y_3$ and $M_3Y_1$ intersect at point $Y.$ Finally, $Z_1,Z_2$ are points symmetric to $H_3$ wrt $AH_1$ and $BH_2$. Lines $M_1Z_2$ and $M_2Z_1$ intersect at the point $Z$ Prove that $H$ is the incenter $\vartriangle XYZ$ .

2009 Balkan MO Shortlist, G5

Let $ABCD$ be a convex quadrilateral and $S$ an arbitrary point in its interior. Let also $E$ be the symmetric point of $S$ with respect to the midpoint $K$ of the side $AB$ and let $Z$ be the symmetric point of $S$ with respect to the midpoint $L$ of the side $CD$. Prove that $(AECZ) = (EBZD) = (ABCD)$.