Found problems: 300
2015 Iran Geometry Olympiad, 2
In acute-angled triangle $ABC$, $BH$ is the altitude of the vertex $B$. The points $D$ and $E$ are midpoints of $AB$ and $AC$ respectively. Suppose that $F$ be the reflection of $H$ with respect to $ED$. Prove that the line $BF$ passes through circumcenter of $ABC$.
by Davood Vakili
2007 France Team Selection Test, 3
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
Kyiv City MO Seniors 2003+ geometry, 2019.11.2
In an acute-angled triangle $ABC$, in which $AB<AC$, the point $M$ is the midpoint of the side $BC, K$ is the midpoint of the broken line segment $BAC$ . Prove that $\sqrt2 KM > AB$.
(George Naumenko)
2012 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle. Let $E$ be a point on the segment $BC$ such that $BE = 2EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AE$ in $Q$. Determine $BQ:QF$.
Mathley 2014-15, 1
Let $AD, BE, CF$ be segments whose midpoints are on the same line $\ell$. The points $X, Y, Z$ lie on the lines $EF, FD, DE$ respectively such that $AX \parallel BY \parallel CZ \parallel \ell$. Prove that $X, Y, Z$ are collinear.
Tran Quang Hung, High School of Natural Sciences, Hanoi National University
2017 Saudi Arabia JBMO TST, 3
Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$.
1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$).
2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$
2012 Oral Moscow Geometry Olympiad, 1
Is it true that the center of the inscribed circle of the triangle lies inside the triangle formed by the lines of connecting it's midpoints?
2000 May Olympiad, 2
Let $ABC$ be a right triangle in $A$ , whose leg measures $1$ cm. The bisector of the angle $BAC$ cuts the hypotenuse in $R$, the perpendicular to $AR$ on $R$ , cuts the side $AB$ at its midpoint. Find the measurement of the side $AB$ .
2018 Yasinsky Geometry Olympiad, 3
In the tetrahedron $SABC$, points $E, F, K, L$ are the midpoints of the sides $SA , BC, AC, SB$ respectively, . The lengths of the segments $EF$ and $KL$ are equal to $11 cm$ and $13 cm$ respectively, and the length of the segment $AB$ equals to $18 cm$. Find the length of the side $SC$ of the tetrahedron.
2015 Czech-Polish-Slovak Junior Match, 4
Let $ABC$ ne a right triangle with $\angle ACB=90^o$. Let $E, F$ be respecitvely the midpoints of the $BC, AC$ and $CD$ be it's altitude. Next, let $P$ be the intersection of the internal angle bisector from $A$ and the line $EF$. Prove that $P$ is the center of the circle inscribed in the triangle $CDE$ .
Kyiv City MO Seniors 2003+ geometry, 2008.10.4
Given a triangle $ABC $, $A {{A} _ {1}} $, $B {{B} _ {1}} $, $C {{C} _ {1}}$ - its chevians intersecting at one point. ${{A} _ {0}}, {{C} _ {0}} $ - the midpoint of the sides $BC $ and $AB$ respectively. Lines ${{B} _ {1}} {{C} _ {1}} $, ${{B} _ {1}} {{A} _ {1}} $and ${ {B} _ {1}} B$ intersect the line ${{A} _ {0}} {{C} _ {0}} $ at points ${{C} _ {2}} $ , ${{A} _ {2}} $ and ${{B} _ {2}} $, respectively. Prove that the point ${{B} _ {2}} $ is the midpoint of the segment ${{A} _ {2}} {{C} _ {2}} $.
(Eugene Bilokopitov)
1982 IMO Shortlist, 9
Let $ABC$ be a triangle, and let $P$ be a point inside it such that $\angle PAC = \angle PBC$. The perpendiculars from $P$ to $BC$ and $CA$ meet these lines at $L$ and $M$, respectively, and $D$ is the midpoint of $AB$. Prove that $DL = DM.$
2016 Stars of Mathematics, 3
Let $ ABC $ be a triangle, $ M_A $ be the midpoint of the side $ BC, $ and $ P_A $ be the orthogonal projection of $ A $ on $ BC. $ Similarly, define $ M_B,M_C,P_B,P_C. M_BM_C $ intersects $ P_BP_C $ at $ S_A, $ and the tangent of the circumcircle of $ ABC $ at $ A $ meets $ BC $ at $ T_A. $ Similarly, define $ S_B,S_C,T_B,T_C. $
Show that the perpendiculars through $ A,B,C, $ to $ S_AT_A,S_BT_B, $ respectively, $ S_CT_C, $ are concurent.
[i]Flavian Georgescu[/i]
1997 Austrian-Polish Competition, 4
In a trapezoid $ABCD$ with $AB // CD$, the diagonals $AC$ and $BD$ intersect at point $E$. Let $F$ and $G$ be the orthocenters of the triangles $EBC$ and $EAD$. Prove that the midpoint of $GF$ lies on the perpendicular from $E$ to $AB$.
Estonia Open Senior - geometry, 2000.2.4
The diagonals of the square $ABCD$ intersect at $P$ and the midpoint of the side $AB$ is $E$. Segment $ED$ intersects the diagonal $AC$ at point $F$ and segment $EC$ intersects the diagonal $BD$ at $G$. Inside the quadrilateral $EFPG$, draw a circle of radius $r$ tangent to all the sides of this quadrilateral. Prove that $r = | EF | - | FP |$.
2021 Sharygin Geometry Olympiad, 10-11.2
Let $ABC$ be a scalene triangle, and $A_o$, $B_o,$ $C_o$ be the midpoints of $BC$, $CA$, $AB$ respectively. The bisector of angle $C$ meets $A_oCo$ and $B_oC_o$ at points $B_1$ and $A_1$ respectively. Prove that the lines $AB_1$, $BA_1$ and $A_oB_o$ concur.
2015 Sharygin Geometry Olympiad, 5
Let $BM$ be a median of nonisosceles right-angled triangle $ABC$ ($\angle B = 90^o$), and $Ha, Hc$ be the orthocenters of triangles $ABM, CBM$ respectively. Prove that lines $AH_c$ and $CH_a$ meet on the medial line of triangle $ABC$.
(D. Svhetsov)
2000 Regional Competition For Advanced Students, 3
We consider two circles $k_1(M_1, r_1)$ and $k_2(M_2, r_2)$ with $z = M_1M_2 > r_1+r_2$ and a common outer tangent with the tangent points $P_1$ and $P2$ (that is, they lie on the same side of the connecting line $M_1M_2$). We now change the radii so that their sum is $r_1+r_2 = c$ remains constant. What set of points does the midpoint of the tangent segment $P_1P_2$ run through, when $r_1$ varies from $0$ to $c$?
2017 Junior Regional Olympiad - FBH, 5
Points $K$ and $L$ are on side $AB$ of triangle $ABC$ such that $KL=BC$ and $AK=LB$. Let $M$ be a midpoint of $AC$. Prove that $\angle KML = 90^{\circ}$
1999 Austrian-Polish Competition, 8
Let $P,Q,R$ be points on the same side of a line $g$ in the plane. Let $M$ and $N$ be the feet of the perpendiculars from $P$ and $Q$ to $g$ respectively. Point $S$ lies between the lines $PM$ and $QN$ and satisfies and satisfies $PM = PS$ and $QN = QS$. The perpendicular bisectors of $SM$ and $SN$ meet in a point $R$. If the line $RS$ intersects the circumcircle of triangle $PQR$ again at $T$, prove that $S$ is the midpoint of $RT$.
2017 Thailand Mathematical Olympiad, 2
A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.
2022 Indonesia TST, G
Given that $ABC$ is a triangle, points $A_i, B_i, C_i \hspace{0.15cm} (i \in \{1,2,3\})$ and $O_A, O_B, O_C$ satisfy the following criteria:
a) $ABB_1A_2, BCC_1B_2, CAA_1C_2$ are rectangles not containing any interior points of the triangle $ABC$,
b) $\displaystyle \frac{AB}{BB_1} = \frac{BC}{CC_1} = \frac{CA}{AA_1}$,
c) $AA_1A_3A_2, BB_1B_3B_2, CC_1C_3C_2$ are parallelograms, and
d) $O_A$ is the centroid of rectangle $BCC_1B_2$, $O_B$ is the centroid of rectangle $CAA_1C_2$, and $O_C$ is the centroid of rectangle $ABB_1A_2$.
Prove that $A_3O_A, B_3O_B,$ and $C_3O_C$ concur at a point.
[i]Proposed by Farras Mohammad Hibban Faddila[/i]
2007 District Olympiad, 2
Consider a rectangle $ABCD$ with $AB = 2$ and $BC = \sqrt3$. The point $M$ lies on the side $AD$ so that $MD = 2 AM$ and the point $N$ is the midpoint of the segment $AB$. On the plane of the rectangle rises the perpendicular MP and we choose the point $Q$ on the segment $MP$ such that the measure of the angle between the planes $(MPC)$ and $(NPC)$ shall be $45^o$, and the measure of the angle between the planes $(MPC)$ and $(QNC)$ shall be $60^o$.
a) Show that the lines $DN$ and $CM$ are perpendicular.
b) Show that the point $Q$ is the midpoint of the segment $MP$.
2019 BMT Spring, 2
Let $A, B, C$ be unique collinear points$ AB = BC =\frac13$. Let $P$ be a point that lies on the circle centered at $B$ with radius $\frac13$ and the circle centered at $C$ with radius $\frac13$ . Find the measure of angle $\angle PAC$ in degrees.
2005 Junior Tuymaada Olympiad, 7
The point $ I $ is the center of the inscribed circle of the triangle $ ABC $. The points $ B_1 $ and $ C_1 $ are the midpoints of the sides $ AC $ and $ AB $, respectively. It is known that $ \angle BIC_1 + \angle CIB_1 = 180^\circ $. Prove the equality $ AB + AC = 3BC $